Enzyme and Microbial Technology, Vol.27, No.6, 414-422, 2000
Optimisation of culture medium and conditions for alpha-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus
The culture medium for Rhodothermus marinus was optimised on a shake-flask scale by using statistical factorial designs for enhanced production of a highly thermostable alpha-L-arabinofuranosidase (AFase). The medium containing 3.6 g/l birch wood xylan and 8.2 g/l yeast extract yielded a maximum of 110 nkat/ml AFase activity together with 125 nkat/ml xylanase and 65 nkat/ml beta-xylosidase activity. In addition, low levels of beta-mannanase (30 nkat/ml), alpha-galactosidase (0.2 nkat/ml), beta-galactosidase (0.3 nkat/ml), endoglucanase (5 nkat/ml) and beta-glucosidase (30 nkat/ml) were detected in the culture filtrate. Among the various carbon sources tested, birchwood xylan was most effective for the formation of AFase and xylanase activities, followed by oat spelt and beechwood xylans, and xylan-rich lignocelluoses (e.g., starch-free sugar beet pulp and wheat bran). Constitutive levels of enzyme activities were detected when the bacterium was grown on other polysaccharides and low-molecular-weight carbohydrates. A fermentation in a 5-1 fermenter (3-1 working volume) using the optimised medium yielded 60 nkat/ml AFase associated with 65 nkat/ml xylanase and 35 nkat/ml beta-xylosidase activities. The crude AFase displayed optimal activity between pH 5.5 and 7 and at 85 degrees C. It had half-lives of 8.3 h at 85 degrees C and 17 min at 90 degrees C. It showed high stability between pH 5 and 9 (24 h at 65 degrees C). The combined use of AFase-rich xylanase and mannanase from R. marinus in the prebleaching of softwood kraft pulp gave a brightness increase of 1.8% ISO. To our knowledge, this is the first report on the production of a high AFase activity by an extreme thermophilic bacterium and this enzyme is the most thermostable AFase reported so far.