화학공학소재연구정보센터
Enzyme and Microbial Technology, Vol.28, No.6, 515-521, 2001
Immobilization of cycloisomaltooligosaccharide glucanotransferase for the production of cycloisomaltooligosaccharides from dextran
Immobilization of cycloisomaltooligosaccharide glucanotransferase (CITase) and its application in the production of cycloisomaltooligosaccharides (CIs) from dextran were studied. Among Various carrier materials examined, the enzyme adsorbed physically on Chitopearl BCW-3505 showed the highest activity (1.75 U/ml carrier). The activity remaining was 35%. The maximum CI yield in batch reactions at 0.2, 2 and 10% dextran was 28, 24 and 12%, respectively. The maximum CI yield at 2% dextran (24%) was slightly less than that with the free enzyme under the same conditions (26%). The concentration of linear oligosaccharides, the byproducts in the reaction mixture, was greater with the immobilized CITase than the free enzyme. The immobilized CITase was less thermostable than the free enzyme by about 10 degreesC. The pattern of influence of Ca2+ concentration on the thermostability differed between the free and immobilized CITase. A Ca2+ concentration of 50-100 mM was optimum for the thermostability of the immobilized CITase, 10-50 mM for the free enzyme. CIs were produced continuously by a column system packed with the immobilized enzyme at 40 degreesC with a space Velocity (SV) of 6 h(-1). The three quarters life time was 4 weeks. We think that relatively long life time at fast SV was accomplished and CI production cost by this method should be lower than the batch reaction. This is the first report on immobilization of CITase.