화학공학소재연구정보센터
Journal of Chemical Physics, Vol.115, No.17, 8152-8156, 2001
Collision of hydrogen atom with single-walled carbon nanotube: Adsorption, insertion, and healing
Interaction of hydrogen atom with (5, 5) single-walled carbon nanotube (SWNT) has been studied over the collision energy range from 1 to 30 eV using a molecular dynamics simulation method. In the energy interval of 1-3 eV, the hydrogen atom can be chemisorbed on the outer wall of the SWNT, provided the impact point is near a vertex carbon atom of a hexagon. The lowest incident energy needed for a hydrogen atom to pass through a hexagon ring on the SWNT is estimated to be 14 eV. Hydrogen atoms that enter into the SWNT would either be encapsulated in it to form endohedral H@tube complex, or escape out of it. The hole on the sidewall of the nanotube induced by the collision of hydrogen atom can be healed after relaxation for several picoseconds.