화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.82, No.14, 3492-3504, 2001
Effects of zone drawing on the structure of metallocene polyethylene
The influence of zone drawing on bulk properties and structure of metallocene polyethylene (m-PE) is reported. Two different m-PE materials were subjected to tensile stresses above the yield point by zone drawing in the temperature range from 50 to 100 degreesC. Drawn materials were characterized by using small- and wide-angle X-ray scattering (SAXS, WAXS), molecular retraction, and small-angle light scattering (SALS). Structural changes were studied as a function of drawing temperature, engineering stress, and draw ratio. WAYS showed strong crystalline orientation in drawn samples, and only the orthorhombic crystal modification was observed. SAXS showed lamellar orientation in drawn samples. At low drawing temperatures of 50 or 60 degreesC, draw ratio increased as a step function of stress. There is a stress barrier, which must be exceeded before high-draw ratios can be achieved at these temperatures. At drawing temperatures of 70 degreesC or above, the barrier stress is low enough that draw ratio increases nearly linearly as a function of stress. Below the stress barrier, spherulitic structure is observed by small-angle light scattering (SALS). Elongation occurs via deformation of the interspherulitic amorphous phase. Molecular retraction was low for these samples, indicating mostly plastic deformation of the amorphous material. Above the stress barrier, SALS showed that spherulites are destroyed. Elongation occurs via deformation of the intraspherulitic amorphous phase. Molecular retraction for these samples was high, indicating elastic deformation of the amorphous material.