Journal of the American Chemical Society, Vol.123, No.41, 10085-10094, 2001
[2+2] versus [3+2] addition of metal oxides across C=C double bonds: Toward an understanding of the surprising chemo- and periselectivity of transition-metal-oxide additions to ketene
The peri-, chemo-, stereo-, and regio selectivity of the addition of the transition-metal oxides OSO4 and LReO3 (L = O-, H3PN, Me, Cp) to ketene were systematically investigated using density-functional methods. While metal-oxide additions to ethylene have recently been reported to follow a [3+2] mechanism only, the calculations reveal a strong influence of the metal on the periselectivity of the ketene addition: OSO4 again prefers a [3+2] pathway across the C=C moiety whereas, for the rhenium oxides LReO3, the [2+2] barriers are lowest. Furthermore, a divergent chemoselectivity arising from the ligand L was found: ReO4- and (H3PN)ReO3 add across the C=O bond while MeReO3 and CpReO3 favor the addition across the C=C moiety. The calculated energy profile for the MeReO3 additions differs from the CpReO3 energy profile by up to 45 kcal/mol due to the stereoelectronic flexibility of the Cp ligand adopting eta (5), eta (3), eta (1) bonding modes. The selectivity of the cycloadditions was rationalized by the analysis of donor-acceptor interactions in the transition states. In contrast, metal-oxide additions to diphenylketene probably follow a different mechanism: We give theoretical evidence for a zwitterionic intermediate that is formed by nucleophilic attack at the carbonyl moiety and undergoes a subsequent cyclization yielding the thermodynamically favored product. This two-step pathway is in agreement with the results of recent experimental work.