Journal of the American Chemical Society, Vol.123, No.46, 11360-11366, 2001
UV laser photolysis of DNA: Effect of duplex stability on charge-transfer efficiency
The distribution of the final base damage was determined within isolated DNA exposed to pulses of 266 nm laser light. Studied lesions included oxidation products arising from biphotonic ionization of DNA bases and pyrimidine dimeric photoproducts arising from monophotonic processes. The distribution of the latter class of damage was found to be correlated with the stability of the DNA duplex. The quantum yield for formation of 8-oxo-7.8-dihydroguanine was much higher than that of other oxidized nucleosides arising from the degradation of thymine and adenine. This observation, together with the shape of the intensity dependence curves, provided evidence for the occurrence of charge-transfer processes within DNA. In addition. increase in the ionic strength of the irradiated DNA and stabilization of the DNA duplex were found to induce a drastic decrease in the yield of thymine and adenine oxidation products. Concurrently, an increase in the yield of 8-oxo-7,8-dihydroguanine was observed. This was rationalized in terms of an increase in the overall charge-transfer efficiency, Therefore, it may be concluded that stabilization of the double-helix favors charge-transfer process toward guanine bases.