화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.121, No.29, 6834-6842, 1999
Hydrogen-bond promoted intramolecular electron transfer to photogenerated Ru(III): A functional mimic of Tyrosine(Z) and histidine 190 in photosystem II
As a model for redox components on the donor side of photosystem II (PS II) in green plants, a supramolecular complex 4 has been prepared. In this, a ruthenium(II) tris-bipyridyl complex which mimics the function of P-680 in PS II, has been covalently linked to a tyrosine unit which bears two hydrogen-bonding substituents, dipicolylamine (dpa) ligands. Our aim is to mimic the interaction between tyrosine(Z) and a basic histidine residue, namely His190 in PSII, and also to use the dpa ligands for coordination of manganese. Two different routes for the synthesis of the compound 4 are presented. Its structure was fully characterized by H-1 NMR, COSY, NOESY,C-13 NMR, LR, and mass spectrometry. H-1 NMR and NOESY gave evidence for the existence of intramolecular hydrogen bonding in 4. The interaction between the ruthenium and the substituted tyrosine unit was probed by steady-state and time-resolved emission measurements as well as by chemical oxidation. Flash photolysis and EPR measurements on 4 in the presence of an electron acceptor (methylviologen, MV2+, Or cobalt pentaminechloride, Co3+) showed that an intermolecular electron transfer from the excited state of Ru(II) in 4 to the electron acceptor took place, forming Ru(III) and the methylviologen radical MV+. or Co2+. This was followed by intramolecular electron transfer from the substituted tyrosine moiety to the photogenerated Ru(III), regenerating Ru(Il) and forming a tyrosyl radical. In water, the radical has a g value of 2.0044, indicative of a deprotonated tyrosyl radical. In acetonitrile, a radical with a g value of 2.0029 was formed, which can be assigned to the tyrosine radical cation. In both solvents the electron transfer is intramolecular with a rate constant k(ET) > 1 x 10(7) S-1 This is 2 orders of magnitude greater than the one for a similar compound 3, in which no dpa arm is attached to the tyrosine unit. Therefore the hydrogen bonding between the substituted tyrosine and the dpa arms in 4 is proposed to be responsible for the fast electron transfer. This interaction mimics the proposed His190 and tyrosine(Z) interaction in the donor side of PS II.