화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.6, 803-810, November, 2001
2차 비선형 광학 초분지형 폴리에스테르의 합성 및 특성
Synthesis and Properties of Hyperbranched Polyester with Second-Order Optical Nonlinearity
E-mail:
초록
새로운 개념의 초분지형 비선형 광학 고분자 (PE-Azo/Hyper)를 AB2형의 기능기를 가지는 단량체 4-[N,N-bis(hydroxyethyl)amino-4'-formyl]azobenzene (CHO-DOH)으로부터 Knoevenagel 축중합 반응을 통하여 합성하였다. 겔크로마토그래피상에서 폴리스티렌을 기준시료로 측정된 중합체의 무게평균분자량은 Mw=61,800 (Mw/Mn=1.86)이었고, 중합체의 용해도를 조사한 결과 1-methyl-2-pyrrolidinone, N,N-dimethylformamide 등의 반양자성 극성 유기용매에 잘 녹았으며 따라서 이들 용매를 이용하여 양질의 박막성형이 가능하였다. 또한 열시차 분석법으로 중합체 PE-Azo/Hyper의 열적 성질을 조사한 결과 녹는점이 관찰되지 않아 무정형으로 판명되었으며 유리 전이 온도는 121℃로 나타났다. 폴링에 의하여 극성 배향된 중합체 박막의 2차 비선형 계수를 Nd:YAG 레이저 (1064 nm)를 이용하여 Maker fringe 방법으로 측정한 결과 d33 = 25.4 pm/V로 비교적 높은 값을 나타내어 초분지형 고분자에서도 극성배향이 이루어져 비선형성이 발현됨을 관찰할 수 있었다.
A nonlinear optical hyperbranched polyester (PE-Azo/Hyper) was synthesized from 4-[N,N-bis(hydroxyethyl)amino-4'-formyl]azobenzene and cyanoacetic acid by a Knoevenagel polycondensation using 4-(dimethylamino)pyridine as a base. The resulting polymer was soluble in polar aprotic solvents such as N,N-dimethylformamide and 1-methyl-2-pyrrolidinone and could be processed into optical quality films by spin coating. The molecular weight was determined to be Mw=61,800 (Mw/Mn=1.86) by gel permeation chromatography using polystyrene as a standard. No melting point was detected by differential scanning calorimeter, indicating that this polymer presents an amorphous state. It shows a glass transition temperature of 121 ℃. The second-order nonlinear optical coefficient d(33) of the poled polymer determined by the second harmonic generation at 1064 nm was 25.4 pm/V.
  1. Prasad PN, Williams DJ, "Introduction to Nonlinear Optical Effects in Molecules and Polymers," John Wiley, New York, 1991 (1991)
  2. Perry JW, "Nonlinear Optical Properties of Molecules and Materials," ACS Symposium Series, ACS, Washington, 1991 (1991)
  3. Lee KS, Samoc M, Prasad PN, "Polymers for Photonics Applications," in "Comprensive Polymer Science," eds. by S.L. Aggarawal and S. Russo, suppl. vol., Pergamon Press, Oxford, 1991 (1991)
  4. Burland DM, Miller RD, Walsh CA, Chem. Rev., 94(1), 31 (1994) 
  5. Jeneke SA, Wynne KJ, "Photonic and Optoelectronic Polymers," ACS Symposium Series, vol. 672, American Chemical Society, Washington DC, 1995 (1995)
  6. Mittler-Neher S, Macromol. Chem. Phys., 199, 513 (1998) 
  7. Lindsay GA, Singer KD, "Polymers for Second-Order Nonlinear Optics," ACS Symposium Series, vol. 601, ACS, Washington DC, 1995 (1995)
  8. Moehlmann GR, "Nonlinear Optical Properties of Organic Materials IX," SPIE Proceedings, 2852, Denver, 1996 (1996)
  9. Ahumada O, Weder C, Neuenschwander P, Suter UW, Herminghaus S, Macromolecules, 30(11), 3256 (1997) 
  10. Zhang YD, Wada T, Sasabe H, Polymer, 38(12), 2893 (1997) 
  11. Buhleier E, Wehner W, Ogtle FV, Synthesis, 155 (1978) 
  12. Saleh BEA, Teich MC, "Fundamentals of Photonics," p. 780, John Wiley, New York, 1991 (1991)
  13. Moon KJ, Shim HK, Lee KS, Zieba J, Prasad PN, Macromolecules, 29(3), 861 (1996) 
  14. Gonin D, Guichard B, Large M, de Morais TD, Noel C, Kajzar F, J. Non-Opt. Phys. Mater., 5, 735 (1996) 
  15. Kajzar F, Lee KS, Adv. Polym. Sci., in press (2000)