Journal of the American Chemical Society, Vol.122, No.29, 6841-6847, 2000
Solution structure of a nonpolar, non-hydrogen-bonded base pair surrogate in DNA
We describe the structure in aqueous solution of a DNA duplex containing a base pair that is structurally analogous to A-T but which lacks hydrogen bonds. Base analogues F (a nonpolar isostere of thymine) and Z (a nonpolar isostere of adenine) are paired opposite one another in a 12 base pair duplex. The sequence context is the binding site of recently studied transcription factor hSRY. The Z-F pair has been shown to be replicated surprisingly well and selectively by DNA polymerase enzymes, considering that it is destabilizing and lacks Watson-Crick hydrogen bonds. The enzymatic studies led to the suggestion that part of the functional activity arises because the pair resembles a natural one in geometry. The present results show that, despite the absence of Watson-Crick hydrogen bonds, the Z-F pair structurally resembles an A-T pair in the same context. This lends support to the proposal that shape matching is an important component in replication, and suggests the general utility of using Z-F as a nonpolar replacement for A-T in probing protein-DNA interactions.