화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.7, No.6, 417-423, November, 2001
Modification of Mesoporous γ-Alumina with Silica and Application for Hydrogen Separation at Elevated Temperature
E-mail:
Amorphous silica membranes were deposited by thermal decomposition of tetraethoxysilane(TEOS) at 600 ℃ on a γ-alumina coated α-alumina tube with pore size of 6-8 nm. The forced cross flow through the porous wall of the support was very effective in plugging macropores. The silica modified layer was extended to a depth of 200 nm and the top surface of the film was quite smooth without pinhole. The silica membrane showed a hydrogen permeance of 1.41 X 10(-7) mol . m(-2).s(-1).Pa-1 and a H2/N2 selectivity of about 20 at a permeation temperature of 450 ℃. The permeation tests with CO2, N2, CH4 and C3H8 showed that a very small number of mesopores remained unplugged by the CVD. Permeation of hydrogen was explained by activated diffusion, and that of the other gases by Knudsen diffusion through the unplugged pores. Thus, the total permeance was comprised of permeances due to the activated and Knudsen diffusion mechanisms. The CVD-modified silica membrane was stable in a H-2-N-2 mixture of 450 ℃ for 100 h.
  1. Kim HJ, Jeong YS, Lee YS, J. Ind. Eng. Chem., 5(1), 69 (1999)
  2. Park YI, Lee KH, J. Ind. Eng. Chem., 5(3), 235 (1999)
  3. Park JS, Kim SK, Lee KH, J. Ind. Eng. Chem., 6(2), 93 (2000)
  4. Yoo SH, Jho JY, Won J, Park HC, Kang YS, J. Ind. Eng. Chem., 6(2), 129 (2000)
  5. Hsieh HP, "Inorganic Membranes for Separation and Reaction," Elsevier, Amsterdam, NL (1996)
  6. Collins JP, Schwartz RW, Sehgal R, Ward TL, Brinker CJ, Hagen GP, Udovich CA, Ind. Eng. Chem. Res., 35(12), 4398 (1996)
  7. Weyten H, Keizer K, Kinoo A, Luyten J, Leysen R, AIChE J., 43(7), 1819 (1997)
  8. Weyten H, Luyten J, Keizer K, Willems L, Leysen R, Catal. Today, 56(1-3), 3 (2000)
  9. Raybold TM, Huff MC, Catal. Today, 56(1-3), 35 (2000)
  10. Lee DW, Lee KH, J. Korean Ind. Eng. Chem., 12(1), 45 (2001)
  11. Nam SE, Lee SH, Lee KH, J. Membr. Sci., 153(2), 163 (1999)
  12. Nam SE, Lee KH, J. Korean Ind. Eng. Chem., 11(1), 113 (2000)
  13. Nam SE, Lee KH, J. Membr. Sci., 170(1), 91 (2000)
  14. Li A, Liang W, Hughes R, J. Membr. Sci., 165(1), 135 (2000)
  15. Jung SH, Kusakabe K, Morooka S, Kim SD, J. Membr. Sci., 170(1), 53 (2000)
  16. Delange RS, Hekkink JH, Keizer K, Burggraaf AJ, J. Membr. Sci., 99(1), 57 (1995)
  17. Delange RS, Keizer K, Burggraaf AJ, J. Membr. Sci., 104(1-2), 81 (1995)
  18. Raman NK, Brinker CJ, J. Membr. Sci., 105(3), 273 (1995)
  19. Tsai CY, Tam SY, Lu YF, Brinker CJ, J. Membr. Sci., 169(2), 255 (2000)
  20. Garalas GR, Megiris CE, Nam SW, Chem. Eng. Sci., 44, 1829 (1989)
  21. Kim SJ, Gavalas GR, Ind. Eng. Chem. Res., 34(1), 168 (1995)
  22. Tsapatsis M, Gavalas G, J. Membr. Sci., 87(3), 281 (1994)
  23. Jiang S, Yan Y, Gavalas GR, J. Membr. Sci., 103(3), 211 (1995)
  24. Wu JC, Sabol H, Smith GW, Flowers DL, Liu PK, J. Membr. Sci., 96(3), 275 (1994)
  25. Yan SC, Maeda H, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 33(3), 616 (1994)
  26. Morooka S, Yan SC, Yokoyama S, Kusakabe K, Sep. Sci. Technol., 30(14), 2877 (1995)
  27. Yoldas BE, Ceram. Bull., 54, 289 (1975)
  28. Shindo Y, Hakuta T, Yoshitome H, Inoue H, J. Chem. Eng. Jpn., 16, 120 (1983)
  29. Kusakabe K, Yoneshige S, Murata A, Morooka S, J. Membr. Sci., 116(1), 39 (1996)