Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 896-901, December, 2001
담지된 철과 철-란타늄 촉매를 이용한 SO2의 원소황으로의 환원반응 특성연구
The Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur over Supported Iron and Iron-Lanthanum Catalysts
E-mail:
초록
γ-Al2O3에 철과 철-란타늄을 함침시켜 촉매를 제조하고, 고정층 미분반응기에서 CO에 의한 원소황으로의 SO2환원반응특성을 연구하였다. 이때 온도는 350 ~ 550 ℃, SO2 농도는 1000 ~ 10000 ppm, CO/SO2 몰비는 1.0 ~ 3.0, 공간속도는 5000 ~ 12000 h(-1)의 영역을 사용하였으며 대기압하에서 실행하였다. 10 wt%철을 γ-Al2O3에 함침시켜 얻은 촉매로 400 ℃이상의 온도에서 95%이상의 높은 SO2 전환율과 4% 이하의 낮은 COS수율을 얻을 수 있었다. CO/SO2의 최적몰비는 양론비인 2.0으로 나타났으며, 몰비가 3.0으로 증가하면 전환율은 증가하였으나 COS수율도 20% 이상으로 증가하였다. 실험조건 영역에서의 공간속도나 SO2 농도의 변화는 SO2 전환율과 반응선택성에 큰 영향을 미치지 않았다. 철은 활성화된 이후에 FeS2 상태로 존재하였으며 반응후에도 상변화는 관찰되지 않았다. 철-란타늄 이성분 촉매에서 기대한 상승작용은 나타나지 않았다.
The catalytic reduction of SO2 to sulfur element by reacting with CO over supported iron and iron-lanthanum catalysts was investigated. This investigation had the following experimental condition: temperature range of 350 ~ 550 ℃, initial SO2 concentration of 1000 ~ 10000 ppm, CO/SO2 molar ratio of 1.0 ~ 3.0 and space velocity of 5000 ~ 12000 h(-1). The SO2 conversion and selectivity to sulfur element were measured in a differential fixed bed reactor at atmospheric pressure. The catalyst prepared by wet impregnation of 10 wt% iron on γ-Al2O3 showed that at temperature above 400 ℃, SO2 conversion was higher than 95% and COS yield was less than 4%. The optimum CO/SO2 molar ratio was estimated as 2.0 At a higher CO/SO2 molar ratio, the SO2 conversion increased but the COS yield became higher than 20%. The effect of SO2 concentration and space velocity for SO2 conversion and COS yield was insignificant in the experimental range. The active phase of the activated iron catalyst was identified as FeS2 by X-ray diffraction. The FeS2 phase remained unchanged after the reaction.
- Zhu TL, Kundakovic L, Dreher A, Flytzani-Stephanopoulos M, Catal. Today, 50(2), 381 (1999)
- Yu JJ, Yu QQ, Jin Y, Chang SG, Ind. Eng. Chem. Res., 36(6), 2128 (1997)
- Jin Y, Yu Q, Chang SG, Environ. Prog., 16(1), 1 (1998)
- Liu W, Sarofim AF, Flytzanistephanopoulos M, Appl. Catal. B: Environ., 4(2-3), 167 (1994)
- Ma JX, Fang M, Lau NT, Appl. Catal. A: Gen., 150(2), 253 (1997)
- Ma JX, Fang M, Lau NT, J. Catal., 163(2), 271 (1996)
- Ma JX, Fang M, Lau NT, J. Catal., 158(1), 251 (1996)
- Fang M, Ma JX, Lau NT, U.S. Patent, 5,804,153 (1998)
- Kim H, Park DW, Woo HC, Chung JS, Theor. Appl. Chem. Eng., 4(1), 121 (1998)
- Hibbert DB, Campbell RH, Appl. Catal., 41, 273 (1988)
- Hibbert DB, Campbell RH, Appl. Catal., 41, 289 (1988)
- Arutyunov VS, Basevich VY, Vedeneev VI, Sokolov OV, Chernysheva AV, Kinet Catal., 33(3), 487 (1992)
- Bagllo JA, Ind. Eng. Chem. Prod. Res. Dev., 21, 38 (1982)
- Happel J, Hnatow MA, Bajars L, Kundrath M, Ind. Eng. Chem. Prod. Res. Dev., 14(3), 154 (1975)
- Bazes JGI, Caretto LS, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 14(4), 264 (1975)
- Haas LA, Khalafalla SE, J. Catal., 29, 264 (1973)
- Khalafalla SE, Haas LA, J. Catal., 24, 121 (1972)
- Zhu TL, Dreher A, Flytzani-Stephanopoulos M, Appl. Catal. B: Environ., 21(2), 103 (1999)
- Arutyunov VS, Basevich VY, Vedeneev VI, Sokolov OV, Kinet. Catal., 32(6), 1156 (1991)
- Ermakova A, Anikeev VI, Bobrin AS, Kinet. Catal., 3(3), 416 (1994)
- Paik SC, Kim H, Chung JS, Catal. Today, 38(2), 193 (1997)
- Paik SC, Chung JS, Appl. Catal. B: Environ., 5(3), 233 (1995)
- Park JH, Han JD, J. Korean Ind. Eng. Chem., 10(8), 1129 (1999)
- Zhang SX, Magara H, Yamazaki M, Takahashi Y, Yamada M, Appl. Catal. B: Environ., 24(2), 89 (2000)
- Flytzani-Stephanopoulos M, Zhu TL, Li Y, Catal. Today, 62(2-3), 145 (2000)
- Seo YS, Lee HM, Han JD, HWAHAK KONGHAK, 38(2), 135 (2000)
- Lau NT, Fang M, J. Catal., 179(2), 343 (1998)