화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 908-913, December, 2001
Poly(DL-lactide)로 피막된 고분자 매트릭스로부터 약물 방출 조절 (III) - pH 1.2와 pH 7.4에서 피막 물질이 약물 방출에 미치는 영향
Control of Drug Release from Polymeric Matrices Coated with Poly(DL-lactide)(III) - Effect of Coating Substance on the Drug Release in pH 1.2 and pH 7.4
E-mail:
초록
키틴 유도체(키토산, 키토산 염산염, 술폰화 키토산)에 약물인 프레드니솔론을 담지한 매트릭스에 poly(DL-lactide)로 피막을 형성시킨 고분자 매트릭스를 제조하였다. 생분해성 고분자인 poly(DL-lactide) 피막이 약물 방출에 미치는 영향을 고찰하기 위해 pH 1.2와 pH 7.4용액에서 실험한 결과 다음과 같은 결론을 얻었다. 약물 방출시간은 pH 1.2에서 보다 pH 7.4에서 더 지연 되었으며 약물 전달체의 함유량이 증가함에 따라 약물의 방출시간도 지연되었다. 피막된 고분자 매트릭스의 종류에 따라 지연된 약물의 방출시간은 키토산의 경우가 가장 길었으며, 술폰화 키토산, 키토산 염산염의 순서였다. 피막된 고분자 매트릭스가 피막되지 않은 매트릭스보다 약물방출 시간이 2배 정도 지연되어 피막된 경우가 약물 방출 조절형 제제로서 더 바람직한 결과를 보였다. 이러한 제형들은 초기 급격한 약물 방출속도의 변화를 억제하는 지속방출형 제제임을 확인할 수 있었다.
For application of drug delivery systems, the polymeric matrices coated with poly(DL-lactide) were prepared using chitin derivatives: chitosan, chitosan hydrochloride, and sulfonated chitosan. As a model drug, prednisolone was used in solution at pH 1.2 and pH 7.4. The release rate of prednisolone was slower at pH 7.4 than at pH 1.2. The release rate of prednisolone decreased in the decreasing order of chitosan, sulfonated chitosan, and chitosan hydrochloride. The drug release rate of polymeric matrices coated with poly(DL-lactide) was approximately two times slower and the burst effect of initial period of drug release was lesser than the non-coated one. From these results, it was determined that the formulations based on the chitin derivative matrices coated with poly(DL-lactide) were a plausible solution to the drug delivery problem of sustained-release of drug dosages.
  1. Austin PR, Brine CJ, Castle JE, Zikakis JP, New Facets Res. Sci., 212, 749 (1952)
  2. Jeuniaux C, Arch. Intern. Physiol. Biochem., 66, 408 (1958)
  3. Muzzarelli RAA, "Chitin," Pergamon Press, New York, pp. 5 ~ 16 (1977)
  4. Knorr D, Food Technol., 38, 85 (1984)
  5. Guy RH, Hadgraft J, "Drug Parameters Important for Transdermal Delivery," Vol. 3, CRC Press, Florida, pp. 4 ~ 6 (1987)
  6. Jacobs IC, Mason NS, "Polymer Delivery Systems Concepts, Polymeric Delivery System Properties and Applications," A.E. Magda and M.P. David, ed., Book Crafters, U.S.A., pp. 1 ~ 17 (1993)
  7. Johson P, Lioyd-Jones JG, "Drug Delivery Systems," Ellis Horwood Press, England, pp. 107 (1984)
  8. Miayzaki S, Ishi K, Nagai T, Chem. Pharm. Bull., 29, 3067 (1981)
  9. Sawayanagi Y, Nambu N, Nagai T, Chem. Pharm. Bull., 30, 4216 (1982)
  10. Kim SI, Na JW, J. Korean Chem. Soc., 37, 527 (1993)
  11. Cha WS, Kim SI, Lee DB, Na JW, J. Korean Ind. Eng. Chem., 6(1), 8 (1995)
  12. Reed AM, Gilding DK, Polymer, 20, 1459 (1979) 
  13. Hackman RH, Aust. J. Biol. Sci., 15, 526 (1962)
  14. Rigby GW, U.S. Patent, 2,072,771 (1936)
  15. Kim YM, Choi KS, Polym.(Korea), 9(5), 417 (1985)
  16. Wolfrom ML, Shen TM, J. Am. Chem. Soc., 81, 1764 (1958) 
  17. Lewis DH, "Controlled Release of Bioactive Agents from Lactide/Glycolide Polymers, Biodegradable Polymers as Drug Delivery Systems," C. Mark and L. Robert, ed., Marcel Dekker, Inc., New York, pp. 1 ~ 41 (1990)
  18. Maeda M, Murakami H, Ohta H, Tajima M, Biosci. Biotechnol. Biochem., 56, 427 (1992)
  19. Rutherford FA, Austin PR, Chitin/Chitosan, Proc. 1st, Int'l Conf., Held in Bostone, 182 (1978)