Journal of Physical Chemistry A, Vol.103, No.25, 4830-4835, 1999
Central transition nuclear magnetic resonance in the presence of large quadrupole couplings: Cobalt-59 nuclear magnetic resonance of cobaltophthalocyanines
The acquisition of distortion-free solid-state nuclear magnetic resonance (NMR) powder line shapes from half-integer spin systems possessing large quadrupole couplings is exemplified on cobaltophthalocyanine complexes. The acquisition of ideal-like static line shapes even for megahertz-wide central transition patterns is discussed, with the aid of spin-echo sequences incorporating short and very weak radio frequency (rf) pulses. Under these conditions most of the crystallites within the bandwidth of interest are excited with essentially orientation-independent pulse angles, while the acquisition of several experiments with varying carrier frequency offsets alleviates the limited bandwidth of the excitation given by the rf pulse lengths. After this approach was tuned with the aid of quantum mechanical calculations and model compounds, it was applied to the study of diamagnetic metal centers in hexacoordinated Co(III)phthalocyanines. Solid-state Co-59 NMR spectra were acquired as a function of the external magnetic field on complexes with general structure [(L)(2)CoPc]Br, where Pc denotes the phthalocyanine macrocycle and the axial ligands L were pyridine, methylimidazole, methylpiperidine, and ammonia. Iterative numerical fittings of these data revealed anisotropic coupling parameters that were larger than those observed in cobaltoporphyrin analogues but, which like the latter, deviated from trends traditionally observed for nonaromatic octahedral cobalt complexes. These systematic differences observed for the various Co-59 coupling parameters are discussed.