화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.104, No.48, 11384-11389, 2000
Ab initio calculations of reactive pathways for alpha-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (alpha-HMX)
Using the BLYP and B3LYP level of density functional theory, four possible decomposition reaction pathways of HMX in the gas phase were investigated: N-NO2 bond dissociation, HONO elimination, C-N bond scission of the ring, and the concerted ring fission. The energetics of each of these four mechanisms are reported. Dissociation of the N-NO2 bond is putatively the initial mechanism of nitramine decomposition in the gas phase. Our results find the dissociation energy of this mechanism to be 41.8 kcal/mol at the BLYP level and 40.5 kcal/mol at the B3LYP level, which is comparable to experimental results. Three other mechanisms are calculated and found at the BLYP level to be energetically competitive to the nitrogen-nitrogen bond dissociation; however, at the B3LYP level these three other mechanisms are energetically less favorable. It is proposed that the HONO elimination and C-N bond scission reaction of the ring would be favorable in the condensed phase.