화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.28, No.4, 379-385, August, 1990
슬러리에 CO2 기체의 흡수(III)-NaOH가 포함된 Kaolin과 White Carbon 슬러리의 층류막에 CO2의 흡수-
Adsorption of CO2 into Slurries(III)-The Absorption of CO2 into Laminer Falling Films of Slurries of Kaolin and White Carbon with HaOH-
초록
젖은 벽탑을 사용하여 20℃, 1atm에서 NaOH 수용액에 CO2 기체를 흡수시켜 기-액 접촉 시간을 변화시키면서 CO2의 흡수속도를 측정하였다. 실험결과는 침투설을 근거로 한 반응흡수 이론에 의해 해석하엿으며, 반응촉진 인자의 실험치가 CO2와 OH-와의 비가역 2차 반응을 동반하는 흡수에 대한 대류-확산 방정식의 근사 이론치와 평균 편차 8%이내에서 일치하였다. Power-law 거동을 나타내는 NaOH-kaolin slurry 계와NaOH-white carbon slurry 계의 비뉴튼액체에서의 화학습수기구는 비뉴튼액체의 특성치인 power-law index와 consistency index를 가미한 뉴튼액체에서의 화학흡수기구를 사용하여 설명할 수 있었다.
The absorption rate of carbon dioxide into laminar falling films of aqueous NaOH solution, NaOH-kaolin slurry and NaOH-white carbon slurry was measured by various changes of contact time between gas and liquid using a wetted-wall column at 20℃. The experimental data were analyzed by the penetration theory based on the gas absorption with second-order ir-reversible chemical reaction between CO2 and OH-. The measured reaction enhancement factors were consistant with those predicted by the approximate equation (14) derived by the convective-diffusion equation within an average deviation of 8, 7.8 and 9.3% in the NaOH, NaOH-kaolin slurry and NaOH-white carbon slurry, respectively. The mechanism of gas absorption with reaction into Newtonian liquid could be also used in the case of power-law liquids.
  1. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88 (1959) 
  2. Robert D, Danckwerts PV, Chem. Eng. Sci., 17, 961 (1962) 
  3. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7 (1977) 
  4. Perry RH, Pigford RL, Ind. Eng. Chem., 45, 1247 (1953) 
  5. Astarita G, Chem. Eng. Sci., 16, 202 (1961) 
  6. Hikita H, Asai S, Katsu Y, Ikuno S, AIChE J., 25, 793 (1979) 
  7. Sada E, Kumazawa H, Ham ZQ, AIChE J., 32, 347 (1986) 
  8. Park SW, Park PW, Kim SS, Yun JW, HWAHAK KONGHAK, 25(5), 447 (1987)
  9. Porter KE, Trans. Inst. Chem. Eng., 41, 320 (1963)
  10. Sada E, Kumazawa H, Butt MA, Lozano JE, Can. J. Chem. Eng., 55, 293 (1977)
  11. Riazi M, Faghri A, AIChE J., 32, 696 (1986) 
  12. Yie S, Huang PG, Chem. Eng. Sci., 36, 387 (1981) 
  13. Hikita H, Ishimi K, Koroyasu S, Can. J. Chem. Eng., 63, 522 (1985)
  14. Juvekar VA, Sharma MM, Chem. Eng. Sci., 28, 825 (1973)
  15. Uchida S, Kaide K, Shindo M, Chem. Eng. Sci., 30, 644 (1975) 
  16. Danckwerts PV, Kennedy AM, Chem. Eng. Sci., 8, 20 (1958)
  17. Sharma MM, Danckwerts PV, Chem. Eng. Sci., 18, 729 (1963) 
  18. Astarita G, Ind. Eng. Chem. Fundam., 2, 294 (1963) 
  19. Hikita H, Takatsuka T, Chem. Eng. J., 11, 131 (1976) 
  20. Hikita H, Asai S, Int. Chem. Eng., 4, 322 (1964)
  21. Hikita H, Asai S, Kag. Kog., 28, 1017 (1964)
  22. Higbie R, Trans. Am. Inst. Chem. Eng., 31, 365 (1935)
  23. Sherwood TK, Pigford RL, "Absorption and Extraction," 2nd ed., pp. 322, McGraw-Hill, Inc., New York, N.Y. (1952)
  24. Hikita H, Asai S, Himukashi Y, Kag. Kog., 31, 818 (1967)
  25. Kim SS, Ph.D. Dissertation, Pusan National University (1989)
  26. van Krevelin DW, Huftijzer PJ, Chem. Eng. Prog., 44, 529 (1948)
  27. Park SW, Kim SS, Ham SB, HWAHAK KONGHAK, to be published, 28 (1990)
  28. Vinogrod JR, McBain JW, J. Am. Chem. Soc., 63, 2008 (1941) 
  29. Park SW, Han SB, Kim SS, Park TY, HWAHAK KONGHAK, 26(3), 280 (1988)
  30. Pinsent BRW, Pearson L, Roughton FJW, Trans. Faraday Soc., 52, 1512 (1956) 
  31. Danckwerts PV, Kennedy AM, Trans. Inst. Chem. Eng., 32, 53 (1954)