화학공학소재연구정보센터
Thin Solid Films, Vol.365, No.2, 219-230, 2000
Atomic scale models of ion implantation and dopant diffusion in silicon
We review our recent work on an atomistic approach to the development of predictive process simulation tools. First-principles methods, molecular dynamics simulations, and experimental results are used to construct a database of defect and dopant energetics in Si. This is used as input for kinetic Monte Carlo simulations. C and B trapping of the Si self-interstitial is shown to help explain the enormous disparity in its measured diffusivity. Excellent agreement is found between experiments and simulations of transient enhanced diffusion following 20-80 keV B implants into Si, and with those of 50 keV Si implants into complex B-doped structures. Our simulations predict novel behavior of the time evolution of the electrically active B fraction during annealing.