Thin Solid Films, Vol.372, No.1-2, 25-29, 2000
Investigation on the origin of wurtzite domains in thick cubic GaN using reactive ion etching
We measured the depth profiling of photoluminescence (PL) in cubic GaN films. The depth-resolved PL of normal grown GaN layers showed that the near-band-edge luminescence intensities of both cubic and wurtzite domains remained constant only until an etching depth of up to 2.7 mu m, but their ratio remained unchanged at all etching depths. Moreover, when a thin In0.1Ga0.9N layer was sandwiched between two GaN layers, the content of the wurtzite domains increased, and its distribution showed a dependence on thickness. As the reactive ion etching depth increased, the PL intensity ratio of cubic GaN to wurtzite domains increased. Based on the distribution, the strain relaxation, instead of the instability of cubic GaN at high temperature, was attributed to the origin of wurtzite domains.