화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.28, No.5, 499-506, October, 1990
Ni3S2로부터 Fe3+에 의한 Ni2+의 침출반응
Leaching of Nickel Ion from Heazlewoodite by Ferric Ion
초록
니켈 matte를 전처리하여 얻은 heazlewookite로부터 니켈을 침출시킬 때, 온도 및 산화제의 농도가 니켈의 침술속도에 미치는 영향을 조사하고, 침출 메카니즘에 대한 최적 모델을 선정하여 그와 관련된 kinetic parameter들을 계산하였다. 입경이 100-160㎛인 heazlewoodite의 일정량을 압착시켜 pellet 형으로 만들어 실험하였으며, 산화제로서는 FeCl3, FeCl2, 및 HCl의 혼합용액을 사용하였다. 온도가 높을수록 니켈의 침출속도는 빨랐으나, 활성화 에너지는 8kcal/mol 수준으로 온도 의존성이 낮았으며, 교반속도와 H+이온 및 Fe2+이온의 농도는 니켈의 침출반응과 무관하였고, Fe3+ 이온은 초기속도에만 영향을 주었다. 또한 니켈 침출의 율속단계는 반응 중간체인 NiS층내에서 니켈의 확산속도인 것으로 판단되었다.
In leaching of heazlewoodite obtained by pretreatment of nickel matte, the effects of temperature and oxidant concentration on leaching rate of nickel were investigated and kinetic parameters for selected optimum model of leaching mechanism were calculated. Fixed amount of heazlewoodite, contained 100-160㎛ of particle diameter, was compressed to pellet shape and leached in a mixture of FeCl3, FeCl2 and HCl as oxidant. The leaching rate was faster at higher temperature but activa-tion energy for initial reaction was as low as 8kcal/mol, which indicates its low dependence on temperature. Stirring speed and ionic concentration of H+ and Fe2+ had no significant effects on the rate and that of Fe3+ had effect on initial rate only. The rate controlling step for nickel dissolution was judged to be the diffusion of nickel through the layer of NiS, reaction intermediate.
  1. Duval C, Traite de Micro Analyse Minerale, Tome 3, Press Sci. Ints., Paris (1956)
  2. Burkin AR, The Chemistry of Hydrometallurgical Processes, E.F.N. Spon, Ltd., London (1966)
  3. Jha MC, Carlberg JR, Meyer GA, Hydrometallurgy, 9, 349 (1983) 
  4. Michal EJ, Fekete SO, Roorda HJ, U.S. Patent, 4,214,901 (1980)
  5. Demarthe JM, Sudre P, Petitet X, Calcul de Reacteurs d Attaque de Matte de Nickel Pour la Production de Chlorure de Nickel, Project No. 19/75, ENSTA, Paris (1975)
  6. Matyskin YD, Kashpurova NP, Zhurnal Prikladnoi Khimii, 54(2), 252 (1981)
  7. Ghali EL, Subrahmanyam DV, Legault J, Tremblay R, Surf. Technol., 8, 195 (1979) 
  8. Ghali EL, Girard B, Subrahmanyam DV, J. Appl. Electrochem., 10, 485 (1977) 
  9. Corrans IJ, Scholtz MT, J. South African Inst. Mining Metallurgy, 69, 403 (1976)
  10. Bascoul A, Doctor Thesis, Institut National Polytechnique de Toulouse, Toulouse, France (1981)
  11. Aveyard R, Haydon DA, An Introduction to the Principles of Surfaces Chemistry, Cambridge Univ. Press, London (1973)
  12. Lee HS, Doctor Thesis, Institut National Polytechnique de Toulouse, Toulouse, France (1984)
  13. Burkin AR, Min. Sci. Eng., 1(1), 4 (1969)
  14. Ammou-Chokroum M, Cambazoglu M, Steinmetz D, Bull. Soc. Fr. Min. Cristallogr., 100, 149 (1977)
  15. Coole S, Doctor Thesis, University of Columbia (1972)
  16. Ferreira RCH, Doctor Thesis, University of London (1972)
  17. Mulak W, Hydrometallurgy, 14, 67 (1985)