화학공학소재연구정보센터
Inorganic Chemistry, Vol.40, No.16, 3889-3899, 2001
New class of oligonuclear platinum-thallium compounds with a direct metal-metal bond. 5. Structure determination of heterodimetallic cyano complexes in aqueous solution by EXAFS and vibrational spectroscopy
The structures of three closely related heterodimetallic cyano complexes, [(NC)(5)Pt-Tl(CN)(n)](n-) (n = 1-3), formed in reactions between [Pt-II(CN)(4)](2-) and Tl-III cyano complexes, have been studied in aqueous solution. Multinuclear NMR data ((TI)-T-205, Pt-195, and C-13) were used for identification and quantitative analysis. X-ray absorption spectra were recorded at the Pt and TlLIII edges. The EXAFS data show, after developing a model describing the extensive multiple scattering within the linearly coordinated cyano ligands, short Pt-Tl bond distances in the [(NC)(5)Pt-Tl(CN)(n)](n-) complexes: 2.60(1), 2.62(1), and 2.64(1) Angstrom for n = 1-3, respectively. Thus, the Pt-Tl bond distance increases with increasing number of cyano ligands on the thallium atom. In all three complexes the thallium atom and five cyano ligands, with a mean Pt-C distance of 2.00-2.01 Angstrom, octahedrally coordinate the platinum atom. In the hydrated [(NC)(5)Pt-Tl(CN)(H2O)(4)](-) species the thallium atom coordinates one cyano ligand, probably as a linear Pt-TI-CN entity with a Tl-C bond distance of 2.13(1) Angstrom, and possibly four loosely bound water molecules with a mean Tl-O bond distance of about 2.51 Angstrom. In the [(NC)(5)Pt-Tl(CN)(2)](2-) species, the thallium atom probably coordinates the cyano ligands trigonally with two TI-C bond distances at 2.20(2) Angstrom, and in [(NC)(5)Pt-Tl(CN)(3)]Tl3- coordinates tetrahedrally with three TI-C distances at 2.22(2) Angstrom. EXAFS data were reevaluated for previously studied mononuclear thallium(III)-cyano complexes in aqueous solution, [Tl(CN)(2)(H2O)(4)](+), [Tl(CN)(3)(H2O)], and [Tl(CN)(4)](-), and also for the solid K[TI(CN)(4)] compound. A comparison shows that the TI-C bond distances are longer in the dinuclear complexes [(NC)(5)Pt-TI(CN)(n)](n-) (it = 1-3) for the same coordination number. Relative oxidation states of the metal atoms were estimated from their Pt-195 and (TI)-T-205 chemical shifts, confirming that the I(NC)5Pt-TI(CN),]n- complexes can be considered as metastable intermediates in a two-electron-transfer redox reaction from platinum(II) to thallium(III). Vibrational spectra were recorded and force constants from normal-coordinate analyses are used for discussing the delocalized bonding in these species.