화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.211, No.2, 210-220, 1999
Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration
The effect of ammonia concentration on the region of existence of single-phase water-in-oh microemulsions has been investigated for the system polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/ammonium hydroxide. The presence of ammonia decreases the size of the microemulsion region. A minimum concentration of surfactant (estimated at about 1.1 wt%) is required for solubilization of the aqueous phase; this value is not significantly affected by ammonia concentration. As indicated by fluorescence spectral data, the transition between bound and free water occurs when the water-to-surfactant molar ratio is about I and the presence of ammonium hydroxide does not appear to have a significant effect on this. Ultrafine (30-70 nm diameter), monodisperse silica particles produced by hydrolysis of tetraethoxysilane (TEOS) in the microemulsion show a complex dependence of the particle size on the water-to-surfactant molar ratio (R) and on the concentration of ammonium hydroxide. At relatively low ammonia concentration in the aqueous pseudophase (1.6 wt% NH3) the particle size decreases monotonically with increase in R. However, for higher ammonia concentrations (6.3-29.6 wt% NH3) a minimum in particle size occurs as R is increased. These trends are rationalized in terms of(a) the effects of the concentration, structure, and dynamics of the NP-5 reverse micelles on the hydrolysis and condensation reactions of TEOS, and (b) the effects of ammonia concentration on the stability of the microemulsion phase, the hydrolysis/condensation reactions of TEOS, and the depolymerization of siloxane bonds.