화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.228, No.2, 220-225, 2000
Characteristics of nonafluorobutyl methyl ether (NFE) adsorption onto activated carbon fibers and different-size-activated carbon particles
The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NEE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE0 (the affinity between adsorbate and adsorbent) and W-0 (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated carbons.