- Previous Article
- Next Article
- Table of Contents
Journal of Colloid and Interface Science, Vol.230, No.2, 223-228, 2000
Examination of the hydrotropic effect of sodium p-toluenesulfonate on a nonionic surfactant (C12E6) solution
Although hydrotropy is extensively used in industry, the molecular mechanism of hydrotropic solubilization has not been completely elucidated yet. In this paper the interaction between a nonionic surfactant (ethoxylated fatty alcohol containing between five and six oxyethylenic units) and sodium p-toluene sulfonate is examined. Surface tension measurements confirm that the hydrotropic effect occurs at a concentration in which the hydrotropes self-associate. Photon correlation spectroscopy studies show that for this concentration of hydrotropes a drastic reduction in the surfactant micellar radius occurs. Furthermore the luminescence of the hydrotrope used as a fluorescence probe indicates that at low concentrations p-toluene sulfonate dissolves in the surfactant micelles but beyond the minimum concentration for hydrotropic solubilization the hydrotrope is present in the aqueous phase. These results suggest that the hydrotropic effect is related to alterations in the water structure induced by the hydrotrope molecules and to the presence of hydrotrope aggregates that furnish an appropriate niche for the surfactant amphiphile.