화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.235, No.2, 383-390, 2001
Determining the zeta potential of porous membranes using electrolyte conductivity inside pores
The zeta potential is an important and reliable indicator of the surface charge of membranes, and knowledge of it is essential for the design and operation of membrane processes. The zeta potential cannot be measured directly, but must be deduced from experiments by means of a model. The possibility of determining the zeta potential of porous membranes from measurements of the electrolyte conductivity inside pores (lambda (pore)) is investigated in the case of a ceramic microfiltration membrane. To this end, experimental measurements of the electrical resistance in pores are performed with the membrane filled with KCI solutions of various pHs and concentrations, hp,,, is deduced from these experiments. The farther the pH is from the isoelectric point and/or the lower the salt concentration is, the higher the ratio of the electrolyte conductivity inside pores to the bulk conductivity is, due to a more important contribution of the surface conduction. Zeta potentials are calculated from hp,,, values by means of a space charge model and compared to those calculated from streaming potential measurements. It is found that the isoelectric points are very close and that zeta potential values for both methods are in quite good agreement. The differences observed in zeta potentials could be due to the fact that the space charge model does not consider the surface conductivity in the inner part of the double layer. Measurements of the electrolyte conductivity within the membrane pores are proved to be a well-adapted procedure for the determination of the zeta potential in situations where the contribution of the surface conduction is significant, i.e., for small and charged pores.