화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.29, No.3, 336-344, June, 1991
공정 변수에 따른 PECVD질화규소 박막 특성에 관한 연구
The Effect of Process Parameters on the Properties of PECVD Silicon Nitride Film
초록
평행판형 반응기를 사용하여 p형(100) 실리콘 웨이퍼 위에 PECVD 질화규소막을 증착하고, 기판온도, RF power 그리고 반응 기체 조성돠 같은 공정 변수가 증착속도와 박막의 특성 변화에 미치는 영향을 측정하였다. 박막에 포함된 수소의 함량은 기판 온도에 크게 영향을 받으며 기판 온도가 증가할수록 감소하였다. 수소 결합형태는 RF power가 증가함에 따라 N-H결합이 증가하였으며 40W 이상에서는 N-H 결합이 Si-H 결합보다 더 많이 존재하였다. 박막에 포함된 수소의 양이 많을수록 Buffered HF(BHF) 용액에서 높은 식각 속도를 나타내었다. 박막에 포함된 수소의 양은 질소를 희석기체로 사용한 경우가 수소를 희석기체로 사용한 경우보다 많았으며 식각속도도 높게 나타났다. 계면 전하 밀도는 회석기체에 관계없이 암모니아의 유량이 증가할수록 감소하는 경향을 나타내었다.
PECVD silicon nitride film was deposited on P-type (100) silicon wafer in a parallel plate type reactor. The effect of different process parameters such as substrate temperature, RF power, and feed gas composition on the properties of silicon nitride layer was studied. Hydrogen content of nitride film was strongly influenced by substrate temperature and decreased with increasing substrate temperature. RF power influenced the type of bond configuration in the film. Si-H bond was dominant at the RF power lower than 40W, while N-H bond became dominant at the RF power higher than 40W. Etch rate in buffered HF solution was increased with the increment of hydrogen content in the film. The films deposited in N2 diluent showed hydrogen content and etch rate higher than those deposited in H2 diluent. Interface charge density decreased as the flow rate of ammonia increased.
  1. Swann RCG, Metha RR, Cuage TP, J. Electrochem. Soc., 114(7), 713 (1967)
  2. Sinha AK, Levinstein HJ, Smith TE, Quintana J, Haszko SE, J. Electrochem. Soc., 125(4), 601 (1978) 
  3. Gorowitz B, Gorczyca TB, Saia RJ, Solid State Technol., 197 (1985)
  4. Maeda M, Nakamura H, Thin Solid Films, 112, 279 (1984) 
  5. Ishii Y, Aoki T, Miyazawa T, J. Vac. Sci. Technol. B(2), 49 (1984) 
  6. Woodward J, Cameron DC, Irving LD, Jones GR, Thin Solid Films, 85, 61 (1981) 
  7. Chow R, Lanford W, Keming W, Losler RS, J. Appl. Phys., 53, 5630 (1982) 
  8. Classen WAP, Valkenburg WGJN, Habraken G, Tamminga Y, J. Electrochem. Soc., 130(12), 2419 (1983) 
  9. Dun H, Pan P, White FR, Douse RW, J. Electrochem. Soc., 128(7), 1555 (1981) 
  10. Nguyen VS, J. Vac. Sci. Technol. B, 4(5), 1159 (1986) 
  11. Beyer W, Wagner H, J. Non-Cryst. Solids, 59-60, 161 (1983) 
  12. Adams AC, Solid State Technol., 26, 135 (1983)
  13. Hirose M, "Plasma Deposited Thin Films," ed. by Mort, J. and Jansen, F., CRC Press (1986)
  14. Pauling L, "The Nature of Chemical Bonds," 3rd ed., Cornell Univ. Press (1959)
  15. Zarowin CB, J. Vac. Sci. Technol. A, 2, 1537 (1984) 
  16. Knolle WR, Thin Solid Films, 168, 123 (1989) 
  17. Bell AT, "Techniques and Application of Plasma Chemistry," ed. by Hollahan, J.R. and Bell, A.T., John Wiley & Sons (1974)
  18. Nguyen VS, Proc. 9th Int'l Conf. on CVD, Vol. 84-6, 213 (1984)
  19. Hirao T, Setsne K, Kitagawa M, Kamada T, Wasa K, Izumi T, Jpn. J. Appl. Phys., 26(12), 2015 (1987) 
  20. Sze SM, "Physics of Semiconductor Device," 2nd ed., Wiley Interscience (1987)
  21. Sah CT, IEEE Trans. Nucl Sci., NS23(6), 1563 (1976)
  22. Hezel R, Blumenstock K, Schorner R, J. Electrochem. Soc., 131(7), 1679 (1984) 
  23. Nguyen VS, Lanford WA, Rieger AC, J. Electrochem. Soc., 133(5), 970 (1986) 
  24. Blaauw C, J. Electrochem. Soc., 131(5), 1114 (1984) 
  25. Messier M, Yehoda JE, Pilione LJ, "Handbook of Plasma Processing Technology," ed. by Rossnagel, S.M., Cuomo, J.J. and Westwood, W.D., Noyes Pub. (1990)