화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.6, 783-787, December, 2001
음전하를 띤 Microsphere에 의한 정전기적 반발력이 정밀여과에서 투과 플럭스에 미치는 영향 고찰
Effect of Electrostatic Interaction on the Permeate Flux During Microfiltration on Negatively Charged Microspheres
E-mail:
초록
본 연구에서는 일정 압력하에서 음전하를 띤 microspheres의 정전기적 반발력에 따른 투과 플럭스의 변화에 관하여 고찰하였다. Microsphere의 정전기적 반발력에 관한 영향을 관찰하기 위해 표면전하 밀도(Nc: 0.45, 5.94, 9.14, 10.25)가 각각 다른 poly(Styrene/Methacrylic acid) microspheres를 제조하였다. 교반속도는 300, 400, 600 rpm, 이온강도는 0.1, 0.01, 0.001로 변화시켜 실험하였다. 투과 플럭스는 표면전하밀도, 교반속도, 이온강도에 큰 영향을 받음을 알 수 있었으며, 투과 플럭스는 표면전하밀도가 클수록, 교반속도가 증가할수록, 이온강도가 작을수록 증가함을 알 수 있었다. 교반속도가 크면 막표면의 농도분극층의 두께가 얇아지기 때문에 투과 플럭스는 증가한다. 이온강도가 작을수록, 표면전하밀도(surface charge density)가 클수록 투과 플럭스가 커지는 원인은 microspheres의 정전기적 이중 층의 두께가 두꺼워짐에 따라 입자 사이의 거리가 멀어져 공극률(porosity)이 커지기 때문이다. 정상상태 플럭스 자료로부터 비 저항 정의식을 이용하여 케이크층의 공극률을 구할 수 있었다. 전하를 나타내지 않는 polystyrene microspheres의 입자크기가 480 nm일 때 농도분극 층의 이론적인 공극률은 0.211이었고, microspheres의 표면이 methacrylic acid로 완전히 개질된 것은 비 저항정의식에 의해 3.04로 계산되었다. 또한 microspheres들간의 정전기적 상호작용력이 작아지면 농도분극층의 공극률도 줄어드는 것을 알 수 있었다.
The effect of the surface charge density(Nc: 0.45, 5.94, 9.14 and 10.25) and the stirrer speed (300, 400 and 600 rpm) on the variation of permeate flux was investigated in a stirred cell filled with negatively charged microspheres under constant pressure. It was found that the permeate flux depended on the surface charge density, the ionic strength and the stirrer speed. High permeate flux was obtained in the condition of high surface charge density, low ionic strength and high stirrer speed due to the force of electrostatic interaction between microspheres. The porosity of a cake layer was calculated from the steady-state flux data. It was found that the reduction of porosity was due to a decrease in repulsive interaction between microspheres.
  1. Hoogland MR, Fane AG, Fell CJD, "The Effect of pH on the Cross-flow Filtration of Mineral Slurries Using Ceramic Membranes," 1st ed., Trans. Tech. Publications, Montpellier (1990)
  2. McDonogh RM, Fane CJD, Fell AG, J. Membr. Sci., 21, 285 (1984) 
  3. Hunter RJ, "Zeta Potential in Colloid Science, Principles and Applications," Academic Press, London (1981)
  4. Tadros ME, Mayes I, "Effects of Particle Properties on Filtration of Aqueous Suspensions," Sanasundaram Ed., New York (1980)
  5. Choi SW, Yoon JY, Haam S, Jung JK, Kim JH, Kim WS, J. Colloid Interface Sci., 228(2), 270 (2000) 
  6. Dawson RMC, Elliott DC, Elliott WC, Jones KM, "Data for Biochemical Research," 3rd Ed., Oxford Univ. Press, Oxford (1986)
  7. El-Aasser MS, "Advances in Emulsion Polymerization and Latex Technology," Vol. II, Emulsion Polymers Institute, Bethlehem, LA (1984)
  8. Baker RJ, Fane AG, Fell CJD, Yoo BH, Desalination, 53, 81 (1985) 
  9. Chang DJ, Hsu FC, Hwang SJ, J. Membr. Sci., 98(1-2), 97 (1995) 
  10. Lee Y, Clark MM, J. Membr. Sci., 149(2), 181 (1998) 
  11. Buscall R, Corner T, Stageman JF, "Polymer Colloids," Elsevier Applied Science Publishers LTD, New York (1985)
  12. Myers D, "Surfaces, Interfaces, and Colloids: Principles and Applications," VCH Publishers, NY (1991)
  13. Bacchin P, Aimar P, Sanchez V, J. Membr. Sci., 115(1), 49 (1996) 
  14. Hong S, Faibish RS, Elimelech M, J. Colloid Interface Sci., 196(2), 267 (1997) 
  15. Causserand C, Jover K, Aimar P, Meireles M, J. Membr. Sci., 137(1-2), 31 (1997) 
  16. Lee Y, Clark MM, J. Membr. Sci., 149(2), 181 (1998) 
  17. Huisman IH, Tragardh G, Tragardh C, Chem. Eng. Sci., 54(2), 281 (1999)