화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.13, No.4, 189-196, December, 2001
Rheology and morphology of concentrated immiscible polymer blends
E-mail:
The phase morphology is an important factor in the rheology of immiscible polymer blends. Through its size and shape, the interface between the two phases determines how the components and the interface itself will contribute to the global stresses. Rheological measurements have been used successfully in the past to probe the morphological changes in model blends, particularly for dilute systems. For more concentrated blends only a limited amount of systematic rheological data is available. Here, viscosities and first normal stress differences are presented for a system with nearly Newtonian components, the whole concentration range is covered. The constituent polymers are PDMS and PIB, their viscosity ratio can be changed by varying the temperature. The data reported here have been obtained at 287 K where the viscosities of the two components are identical. By means of relaxation experiments the measured stresses are decomposed into component and interfacial contributions. The concentration dependence is quite different for the two types of contribution. Except for the component contributions to the shear stresses there is no clear indication of the phase inversion. Plotting either the interfacial shear or normal stresses as a function of composition produces in some cases two maxima. The relaxation times of these stresses display a similar concentration dependence. Although the components have the same viscosity, the stress-component curves are not symmetrical with respect to the 50/50 blend. A slight elasticity of one of the components seems to be the cause of this effect. The data for the more concentrated blends at higher shear rates are associated with a fibrillar morphology.
  1. Almusallam AS, Larson RG, Solomon MJ, J. Rheol., 44(5), 1055 (2000) 
  2. Astruc M, Navard P, J. Rheol., 44(4), 693 (2000) 
  3. Chesters AK, Trans. I. Chem. E., 69, 259 (1991)
  4. Choi SJ, Schowalter WR, Phys. Fluids, 18, 420 (1975) 
  5. Cristini V, Blawzdziewicz J, Loewenberg M, Phys. Fluids, 10, 1781 (1998) 
  6. de Bruijn RA, Ph.D. Thesis, T.U. Eindhoven (1989)
  7. Doi M, Ohta T, J. Chem. Phys., 95, 1242 (1991) 
  8. Friedrich C, Gleinser W, Korat E, Maier D, Weese J, J. Rheol., 39(6), 1411 (1995) 
  9. Grmela M, Ait-Kadi A, Utracki LA, J. Non-Newton. Fluid Mech., 77(3), 253 (1998) 
  10. Guido S, Simeone M, Villone M, Rheol. Acta, 38(4), 287 (1999) 
  11. Huitric J, Mederic P, Moan M, Jarrin J, Polymer, 39(20), 4849 (1998) 
  12. Janssen J, Ph.D. Thesis, T.U. Eindhoven (1993)
  13. Jansen KMB, Agterof WGM, Mellema J, J. Rheol., 45(1), 227 (2001) 
  14. Jansseune T, Mewis J, Moldenaers P, Minale M, Maffettone PL, J. Non-Newton. Fluid Mech., 93, 153 (2000) 
  15. Jansseune T, Vinckier I, Moldenaers P, Mewis J, J. Non-Newton. Fluid Mech., 99, 167 (2001) 
  16. Jeon HS, Nakatani AI, Hobbie EK, Han CC, Langmuir, 17(10), 3087 (2001) 
  17. Khakar DV, Ottino JM, Int. J. Multiph. Flow, 13, 71 (1986) 
  18. Knops YMM, Slot JJM, Elemans PHM, Bulters MJH, AIChE J., 47(8), 1740 (2001) 
  19. Lee HM, Park OO, J. Rheol., 38(5), 1405 (1994) 
  20. Li X, Charles R, Pozrikidis C, J. Fluid Mech., 320, 395 (1996) 
  21. Li X, Renardy YY, Renardy M, Phys. Fluids, 12, 269 (2000) 
  22. Lyu SP, Bates FS, Macosko CW, AIChE J., 46(2), 229 (2000) 
  23. Loewenberg M, Hinch JEJ, J. Fluid Mech., 321, 395 (1996) 
  24. Maffettone PL, Minale M, J. Non-Newton. Fluid Mech., 78(2), 227 (1998) 
  25. Minale M, Mewis J, Moldenaers P, AIChE J., 44(4), 943 (1998) 
  26. Onuki A, Phys. Rev., A, 35, 5149 (1987) 
  27. Palierne JF, Rheol. Acta, 29, 204 (1990) 
  28. Peters GWM, Hansen S, Meijer HEH, J. Rheol., 45(3), 659 (2001) 
  29. Rallison JM, Annu. Rev. Fluid Mech., 16, 45 (1981) 
  30. Sigillo I, Disanto L, Guido S, Grizzuti N, Polym. Eng. Sci., 37(9), 1540 (1997) 
  31. Stone HA, Annu. Rev. Fluid Mech., 26, 65 (1994) 
  32. Sundararaj U, Macosko CW, Macromolecules, 28(8), 2647 (1995) 
  33. Takahashi Y, Kurashima N, Noda I, Doi M, J. Rheol., 38(3), 699 (1994) 
  34. Utracki LA, J. Rheol., 35, 1615 (1991) 
  35. Vinckier I, Mewis J, Moldenaers P, Rheol. Acta, 36(5), 513 (1997)
  36. Vinckier I, Moldenaers P, Terracciano AM, Grizzuti N, AIChE J., 44(4), 951 (1998) 
  37. Vinckier I, Mewis J, Moldenaers P, Rheol. Acta, 38(3), 198 (1999) 
  38. Wetzel ED, Tucker CL, J. Fluid Mech., 426, 199 (2001) 
  39. Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H, Masuda T, J. Rheol., 42(3), 567 (1998) 
  40. Yuan XF, Doi M, Colloids Surf. A: Physicochem. Eng. Asp., 144, 305 (1998) 
  41. Ziegler V, Wolf BA, J. Rheol., 43, 1033 (1999)