Journal of Vacuum Science & Technology B, Vol.19, No.6, 2926-2929, 2001
Plasma-induced damage study for n-GaN using inductively coupled plasma reactive ion etching
In this article, we report a comprehensive study on plasma-induced damage for n-GaN using inductively coupled plasma (ICP) reactive ion etching. Effect of ICP coil power, etch duration and bias voltage on the electrical characteristics of n-GaN was investigated. It was observed that variation in ICP coil power and etch duration had minimal effect on varying the plasma-induced surface damage. Bias voltage was found to be the most significant cause of variation in plasma-induced damage to the surface of n-GaN. Therefore, low surface damage can be achieved by optimizing the bias voltage at which the sample is being etched. Auger electron spectroscopy analysis showed that the stoichiometry of the etched GaN surfaces was identical, independent of the etching conditions.