화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.30, No.3, 339-346, June, 1992
Celite에 고정화된 Pseudomonas sp.에 의한 폐수 중의 PVA 분해
Degradation of Polyvinyl Alcohol in Wastewater by Pseudomonas sp. Immobilized on Celite
초록
생물학적 난분해성 물질인 PVA함유 폐수를 효과적으로 처리하기 위하여 celite를 고정화 담체로 사용한 air-lift reactor를 사용하였다. PVA 용적부하 2g PVA/Lㆍday, 체류시간 24hr에서 PVA 제거 효율은 91.6%였으며, 이 때 F/M비는 0.13g PVA/g cellㆍday로 나타났다. 동일한 체류시간에서 반응기 내의 미생물농도 증가에 따라 PVA 제거 효율의 증가율은 감소하였으며, 동일한 미생물 농도에서 유입수의 PVA 농도가 2g/L 이상일 때 PVA 제거 효율은 거의 일정하였다. 동일한 PVA 용적부하에서 저농도의 폐수를 단시간 처리하는 것이 고농도의 폐수를 장시간 처리하는 것보다 제거 효율은 떨어지지만 처리수는 PVA 농도는 낮게 나타났다. 그리고 PVA 비제거 속도는 specific PVA loading이 0.7g PVA/g cellㆍday까지는 직선적으로 증가하였으나 그 이상에서는 감소하였다. 이 때 제거 속도 상수 K는 0.069L/mg/hr이며 PVA 제거 효율은 다음과 같이 나타낼 수 있다.
Sr / SO = 0.069Xㆍ(V/Q) / 1+0.069Xㆍ(X/Q)
The aim of this study is to treat efficiently PVA-containing wastewater. PVA is known as one of poorly biodegradable materials. As a microbial immobilization support, celite was used in the air-lift reactor. The PVA removal efficiency was 91.6% at 2g PVA/Lㆍday of PVA volume loading and at 24hr retention time, when F/M ratio was 0.13g PVA/g cellㆍday. At the same retention time, an increasing rate of PVA removal efficiency was decreased with increasing concentration of microorganism in the reactor, and at the same concentration of microorganism, PVA removal efficiency was approximately constant when PVA concentration of influent was more than 2g/L. At the same PVA volume loading, treating wastewater of low concentration at short period resulted in lower PVA concentration in effluent than treating wastewaterof high concentration at long period with respect to the effluent PVA concentration, even though the removal efficiency of the former was lower than that of the latter. Specific PVA removal efficiency increased propor-tionally with specific PVA loading up to 0.7g PVA/g cellㆍday. PVA removal rate constant, K was 0.069L/mg/hr. PVA removal efficiency could be expressed as follows.
Sr/So=0.069Xㆍ(V/Q)/1+0.069Xㆍ(X/Q)
  1. Suzuki T, Ichihira Y, Yamada M, Tonomura K, Agric. Biol. Chem., 37(4), 747 (1973)
  2. Nord FF, Naturwissenschaften, 24, 793 (1936)
  3. Osumi YI, Trans., 1962 Annual Meeting, Agricultural Chemical Society in Japan, 133 (1962)
  4. Suzuki T, Agric. Biol. Chem., 40(3), 497 (1976)
  5. Sakazawa C, Shimao M, Taniguchi M, Kato N, Appl. Environ. Microbiol., 41(1), 261 (1981)
  6. Sakai K, Morita M, Hamada N, Watanabe Y, Agric. Biol. Chem., 45(1), 63 (1981)
  7. Sakai K, Hamada N, Watanabe Y, Agric. Biol. Chem., 50(4), 989 (1986)
  8. Kim JM, Cho MH, Jo YL, Jeong SY, Korean J. Biotechnol. Bioeng., 6(4), 363 (1991)
  9. Finley JH, Anal. Chem., 33(13), 1925 (1961) 
  10. Darby RT, Kaplan AM, Appl. Microbiol., 16, 600 (1968)
  11. Awao T, Komagata K, Yoshimura I, Mitsugi K, J. Ferment. Technol., 49, 188 (1971)
  12. Morita M, Watanabe Y, Agric. Biol. Chem., 41(8), 1535 (1977)
  13. Sakai K, Hamada N, Watanabe Y, Agric. Biol. Chem., 50(4), 989 (1986)
  14. "환경오염공정시험법," (수질분야), 환경청 (1988)