화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.35, No.4, 305-315, 2002
Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst
The present paper examined the kinetics of photocatalytic degradation of volatile organic compounds (VOCs) including gaseous trichloroethylene (TCE), acetone, methanol and toluene. Variable parameters were initial concentration of VOCs, water vapor content and photon flux of ultra-violet (UV) light. A batch photo-reactor was specifically designed for this work. The photocatalytic degradation rate increased with increasing the initial concentration of VOCs, but maintained almost constant beyond a certain concentration. It matched well with the Langmuir-Hinshelwood (L-H) kinetic model. For the influence of water vapor in a gas phase photocatalytic degradation rate, there was an optimum concentration of water vapor in the degradation of TCE and methanol. And, water vapor enhanced the photocatalytic degradation rate of toluene, whereas it inhibited that of acetone. As for the effect of photon flux, it was found that photocatalytic degradation occurs in two regimes with respect to photon flux.