화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.56, No.3-4, 453-457, 2001
Biological production of optically active muconolactones by Rhodococcus rhodochrous
Optically active (-)-3-methylmuconolactone was biologically produced using a mutant strain of Rhodococcus rhodochrous N75 that is capable of metabolizing 4-methylcatechol via a modified ortho-cleavage pathway. The mutant strain (CJ30) was prepared by mutagenesis using N-methyl-N ' -nitro-N-nitrosoguanidine and found to be blocked in the degradation of 3-methyl-muconolactone. Cells of the mutant CJ30, which had been previously grown on yeast extract and induced with p-toluate, transformed p-toluate (11.5 mM) to optically active (-)-3-methylmuconolactone with a yield of 53%. The structure of 3-methylmuconolactone was confirmed by NMR spectroscopy and mass spectrometry. Cell-free extracts of R. rhodochrous N75 also transformed a range of 4-alkylcatechols, such as 4-ethylcatechol, 4-iso-propylcatechol, and 4-tert-butylcatechol, to the corresponding 4-alkyl-substituted muconolactones.