Applied Microbiology and Biotechnology, Vol.56, No.5-6, 767-775, 2001
Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements
Based on requirements for acetate or lipoic acid for aerobic (but not anaerobic) growth, Lactococcus lactis subsp. lactis mutants with impaired pyruvate catabolism were isolated following classical mutagenesis. Strains with defects in one or two of the enzymes, pyruvate formate-lyase (PFL), lactate dehydrogenase (LDH) and the pyruvate dehydrogenase complex (PDHC) were obtained. Growth and product formation of these strains were characterized. A PFL-defective strain (requiring acetate for anaerobic growth) displayed a two-fold increase in specific lactate production compared with the corresponding wild-type strain when grown anaerobically. LDH defective strains directed 91-96% of the pyruvate towards a-acetolactate, acetoin and diacetyl production when grown aerobically in the presence of acetate and absence of lipoic acid (a similar characteristic was observed in an LDH and PDHC defective strain in the presence of both acetate and lipoic acid) and more than 65% towards formate, acetate and ethanol production under anaerobic conditions. Another strain with defective PFL and LDH was strictly aerobic. However, a variant with strongly enhanced diacetyl reductase activities (NADH/NAD(+) dependent diacetyl reductase, acetoin reductase and butanediol dehydrogenase activities) was selected from this strain under anaerobic conditions by supplementing the medium with acetoin. This strain is strictly aerobic, unless supplied with acetoin.