화학공학소재연구정보센터
Polymer, Vol.43, No.6, 1943-1947, 2002
Morphology and crack resistance behavior of binary block copolymer blends
Fracture behavior of binary blends comprising of styrene-butadiene block copolymers having star and triblock architectures was studied via instrumented Charpy impact test. The toughness of the ductile blends was characterized by dynamic crack resistance curves (R-curves). This study represents a systematic investigation of crack resistance behavior of nanometer structured binary block copolymer blends and the development of a new material with a combination of high toughness and transparency, usually not observed in incompatible polymer blends. While the lamellar star block copolymer shows an elastic behavior (small-scale yielding and unstable crack growth), adding of 20 wt% of the triblock copolymer leads to a stable crack growth and at 60 wt% of the triblock copolymer the strong increase of toughness values indicate a tough/high-impact transition, demonstrating the existence of novel toughening concepts for polymers based on nanometer structured materials.