화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.43, No.18, 3287-3298, 2000
Thermally controlled bubble collapse in binary solutions
This paper theoretically analyzes thermally controlled bubble collapse in binary solutions. Using a finite difference approach with an adaptive grid, three aspects of bubble collapse are investigated: counter-diffusion, initial bubble diameter, and absorber cooling rate. Results illustrate how counter-diffusion of the absorbent, acting to preserve the bubble life span, is offset by convective mass transfer arising from bubble interface motion. Predicted bubble mass transfer rates for an ammonia water system increase with the square of the bubble radius (diameters: 1.8-5.6 mm) and with increased absorber cooling rates. Model predictions compare well with simple semi-empirical correlations for bubble heat and mass transfer coefficients.