International Journal of Heat and Mass Transfer, Vol.45, No.3, 655-666, 2002
Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow
This work deals with the study of the steady-state analysis of conjugated heat transfer process for the thermal entrance region of a developed laminar-forced convection flow of a power-law fluid in a circular tube. A known uniform heat flux is applied at the external surface of the tube. The energy equation in the fluid is solved analytically using the integral boundary layer approximation by neglecting the heat generation by viscous dissipation and the axial heat conduction in the fluid. This solution is coupled to the Laplace equation for the solid, where the axial heat conduction effects are taken into account. The governing equations are reduced to an integro-differential equation which is solved by analytical and numerical methods. The results are shown for different parameters such as conduction parameter, alpha, the aspect ratio of the tube, epsilon and the index of power-law fluid, n.