화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.2, 204-211, April, 1993
수치모사에 의한 원심식 분자 증류장치에서의 열 및 물질전달에 미치는 Prandtl 수의 영향
The Effect of Prandtl Number on Heat and Mass Transfer in Centrifugal Molecular Still by Numerical Simulation
초록
원심식 분자 증류장치에서 회전하는 유체에 대한 열 및 물질전달의 수학적 모델을 개선하였다. 유체가 흐르는 접선 방향의 속도성분이 수직방향에 독립적으로 일정값을 가지고 있음을 알았다. 에너지식과 물질전달식을 근사화하지 않고 유한차분법을 사용하여 유체의 온도 분포와 증발속도를 구하였다. Prandtl 수가 증가함에 따라 가열판으로부터 유체내부로의 열전도가 감소하였고 이 때 Prandtl수가 10근처에서는 근사해와 거의 일치하였다. 그러나 Prandtl 수가 100보다 클 때는 근사해와 다른 거동을 나타냈다. 가열해 주는 열속이 클수록 Prandtl수에 따른 값의 차이가 심해졌다. 극한 조건으로 열전달 속도가 유체표면에서 잠열과 같다고 하는 Greenberg의 가정을 이용하여 같은 결과를 얻었다.
The rigorous mathematical model of heat and mass transfer on the rotating surface in the centrifugal molecular distillation is developed. Tangential velocity component to the conical surface is independent of z-direction but not negligible. The solutions of fluid temperature profile and mass transfer rates of distillate are obtained using Finite difference Method. The heat conduction from heating plate to film decreased as Prandtl number increased. These solutions show good agreement with the approximate solution for liquids near Pr≒10. However these solutions differ from the approximate solutions at Pr>100 as heating rate increases. The solutions in the limited case that the heating rate is equal to the latent heat of vaporization agree with those of Greenberg.
  1. Burrow G, "Molecular Distillation," Oxford University Press, Amen House, London (1960)
  2. Knudsen M, Ann. Physik, 47, 697 (1915)
  3. Langmuir I, Phys. Rev., 2, 329 (1913) 
  4. Greenberg DB, AIChE J., 18, 269 (1972) 
  5. Inuzuka M, Saito I, YamadaI, Hiraoka S, Ishikawa H, J. Chem. Eng. Jpn., 19, 14 (1986)
  6. Inuzuka M, Satio I, Moriya T, Yamada I, hiraoka S, Ishikawa H, Kag. Kog. Ronbunshu, 10, 383 (1984)
  7. Inuzuka M, Saito I, Moriya T, Yamada I, Hiraoka S, Ishikawa H, Mori H, Kag. Kog. Ronbunshu, 11, 456 (1985)
  8. Inuzuka M, Ishikawa H, Sugimaya R, Yamada I, Hiraoka S, Mori S, Nishiko K, J. Chem. Eng. Jpn., 20, 415 (1987)
  9. Hinze JO, Milborn H, J. Appl. Mech., 17, 145 (1950)
  10. Mitchell AR, Griffiths DF, "The Finite Diference Methods in Partial Differential Equations," John Wiley & Sons, New York, NY (1980)
  11. Denn MM, "Process Fluid Mechanics," Prentice-Hall, Englewood Cliffs, NJ (1980)
  12. Larsen PS, Arpaci VS, "Convection Heat Transfer," Prentice-Hall, Englewood Cliffs, NJ (1984)
  13. Stephen W, "Mathematica," Addison-Wesley Co., Redwood, CA (1991)