화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.3, 255-262, June, 1993
ECR plasma 식각장치에서 CF4에 의한 Si의 식각반응에 관한 연구
The etching reaction of silicon with CF4 in ECR plasma etching system
초록
ECR plasma 식각장치를 제작하여 CF4에 의한 Si의 식각반응을 연구하였다. ECR plasma 식각장치의 식각특성을 조사하기 위해 p-Si(100)과 n-Si(100)의 식각속도를 식각시간, 식각압력, CF4의 유량, O2 의 첨가량 및 식각온도를 변화시키면서 측정하여 해석하였다. 식각속도는 p-Si(100)와 n-Si(100)에 상관없이 거의 같은 속도를 보였으며, 식각압력과 CF4의 유량이 증가함에 따라 증가하기는 하나 높은 압력에서는 Si 표면에 고분자 막이 형성되는 한편 유량이 높아지면 반응성성분이 배출되어 식각속도가 감소하였다. 균일한 식각속도를 보였으며, CF4에 첨가한 O2의 함량이 약 15%일 때 최대의 식각속도를 보였다. 낮은 압력에서는 이방성식각을 보였으나 높은 압력에서는 등방성식각을 얻었다.
The etching reaction of silicon with CF4 was studied in a home-made ECR(electron cyclotron resonance) plasma etching system. Experimental data for the etch rates of p-Si(100) and n-Si(100) were measured and analyzed with varying etch time, etching pressure, CF4 flow rate, the partial pressure of O2 and etching temperature to investigate the characteristics of the etching system. The etch rates were almost the same for both p- and n-type Si(100) and increased with the increases in etching pressure and CF4 flow rate, while the etch rate decreased because polymer film was formed on the Si surface at high pressure and reactive species were pumped away at high flow rate of CF4. The etch rate became maximum when the amount of O2 added to CF4 was about 15% and showed uniformity. The etching profile showed anisotropic etching at low pressure and isotropic etching at high pressure.
  1. Bollinger D, Lida S, Matsumoto O, Solid State Technol., May, 111 (1984)
  2. Bollinger D, Lida S, Matsumoto O, Solid State Technol., June, 167 (1984)
  3. Samukawa S, Mori S, SasakiM, Jpn. J. Appl. Phys., 29(4), 792 (1990) 
  4. Samukawa S, Nakagawa Y, Ikeda K, Jpn. J. Appl. Phys., 30(2), 423 (1991) 
  5. Fujiwara N, Sawai H, Yoneda M, Nishioka K, Morie K, Nakamoto K, Jpn. J. Appl. Phys., 30(11B), 3142 (1991) 
  6. Suzuki K, Okudaira S, Sakudo N, Kanomato I, Jpn. J. Appl. Phys., 16(11), 1979 (1977) 
  7. Katsuo S, Kiuchi M, Jpn. J. Appl. Phys., 22(4), L210 (1983) 
  8. Ono T, Oda M, Takahashi C, Matuo S, J. Vac. Sci. Technol. B, 4(3), 696 (1986) 
  9. Tohinaga Y, Hayashi N, Araki H, Nakayama S, J. Vac. Sci. Technol. B, 6(1), 272 (1988) 
  10. Forster J, Holber W, J. Vac. Sci. Technol. A, 7(3), 899 (1989) 
  11. Fujiwara N, Sawai H, Yoneda M, Nishioka K, Horie K, Nakamoto K, Abe H, Jpn. J. Appl. Phys., 30(11B), 3142 (1991) 
  12. Pongratz S, Gesche R, Kreschmer KH, Lorenz G, J. Vac. Sci. Technol. B, 9(6), 3493 (1991) 
  13. Samukawa S, Jpn. J. Appl. Phys., 30(11B), 3154 (1991) 
  14. Tsuimoto K, Okudaira S, Tachi S, Jpn. J. Appl. Phys., 3319 (1991) 
  15. Park WI, Song JJ, Lee SM, Lee KB, Korean Appl. Phys., 4(3), 340 (1991)
  16. Song SK, Chang HY, Choi DI, Chang CS, Korean Appl. Phys., 3(2), 171 (1990)
  17. Matsuo S, Jpn. J. Appl. Phys., 17(1), 235 (1978) 
  18. Matsuo S, J. Vac. Sci. Technol., 17, 587 (1980) 
  19. Brandt WW, Honda T, Jpn. J. Appl. Phys., 57(1), 119 (1985) 
  20. Chapman BN, Minkiewicz VJ, J. Vac. Sci. Technol., 15(2), 329 (1978) 
  21. Flamm DL, Donnelly VM, Ibboton DE, J. Vac. Sci. Technol. B, 1(1), 23 (1983) 
  22. Mogab CJ, Adams AC, Flamm DL, J. Appl. Phys., 49, 3796 (1978) 
  23. Winters HF, Haarer D, Phys. Rev., B, Condens. Matter, 36, 6613 (1986)
  24. Takahashi C, Kiuchi M, Ono T, Matsuo S, J. Vac. Sci. Technol. A, 6(4), 2346 (1988)