Journal of Chemical Physics, Vol.116, No.8, 3184-3193, 2002
Two functions of the density matrix and their relation to the chemical bond
We examine and compare two previously introduced functions of the one-particle density matrix that are suitable to represent its off-diagonal structure in a condensed form and that have illustrative connections to the nature of the chemical bond. One of them, the Localized-Orbital Locator (LOL) [J. Molec. Struct. (THEOCHEM) 527, 51 (2000)], is based only on the noninteracting kinetic-energy density tau and the charge density rho at a point, and gives an intuitive measure of the relative speed of electrons in its vicinity. Alternatively, LOL focuses on regions that are dominated by single localized orbitals. The other one, the Parity Function P [J. Chem. Phys. 105, 11134 (1996)], is a section through the Wigner phase-space function at zero momentum, and contains information about the phase of the interference of atomiclike orbital contributions from bound centers. In this paper, we discuss the way in which these functions condense information in the density matrix, and illustrate on a variety of examples of unusual chemical bonds how they can help to understand the nature of "covalence."