화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.246, No.1, 203-213, 2002
Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery
Capillary imbibition is an oil recovery mechanism in naturally fractured reservoirs if rock matrix is water wet and there is enough water in fractures in contact with matrix. It, however, may not yield an effective recovery under certain circumstances even if these conditions are maintained. Heavy matrix oil, high interfacial tension (IFT), oil-wet matrix sample, and limited contact area of matrix with water in fractures require additional effort to enhance the oil recovery by capillary imbibition. Chemicals and heat can be injected into naturally fractured reservoirs to improve the capillary imbibition recovery performance. With the involvement of low IFT fluid, heat, and polymer solution in the process, capillary imbibition dynamics may change and this entails an identification of the dynamics of the process through laboratory experiments before injection of these expensive fluids into oil reservoirs. In this study, the dynamics of capillary imbibition was studied experimentally. Static imbibition experiments were conducted on oil- and water-wet rock samples under different boundary conditions and saturated with different types of oil. The analyses were conducted using three indicators, namely the capillary imbibition rate, ultimate oil recovery, and shape of the recovery profile. Based on these indicators, the dynamics of capillary imbibition of different aqueous phases were evaluated for different oil types and matrix properties. The conditions that cause weak or strong capillary imbibition were identified.