화학공학소재연구정보센터
International Journal of Control, Vol.74, No.10, 988-995, 2001
Residual models and stochastic realization in state-space identification
This paper presents theory and algorithms for validation in system identification of state-space models from finite input-output sequences in a subspace model identification framework. Our formulation includes the problem of rank-deficient residual covariance matrices, a case which is encountered in applications with mixed stochastic-deterministic input-output properties as well as for cases where outputs are linearly dependent. Similar to the case of prediction-error identification, it is shown that the resulting model can be decomposed into an input-output model and a stochastic innovations model. Using the Riccati equation, we have designed a procedure to provide a reduced-order stochastic model that is minimal with respect to system order as well as the number of stochastic inputs thereby avoiding several problems appearing in standard application of stochastic realization to the model validation problem.