화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.6, 637-646, December, 1993
초임계 상태의 이산화탄소에 의한 페놀과 그 염화물의 용해도 측정
Solubilities of Phenol and its Chlorinates in supercritical Carbon Dioxide
초록
유통형의 평형추출장치를 제작하고 초임계 상태의 이산화탄소중에 phenol과 그 염화물인 p-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol의 용해도를 309.2K, 318.2K, 333.2K의 일정온도와 8-20MPa의 압력범위에서 측정하였다. 용해도의 측정값과 Peng- Robinson의 상태방정식을 사용하여 얻은 추산값은 잘 일치하며 계의 온도가 용질의 용융점 근방 또는 약간 높은 온도에서도 용융액상에 대한 이산화탄소의 용해도를 무시한 기-고계 평형계산은 실험값을 잘 표현할 수 있었다. 상태방정식중의 용질의 a,b를 parameter로 취급하여 측정한 용해도를 가장 잘 표현하는 parameter를 구하였고 동일한 2성분계에서 얻은 a, b는 온도에 크게 영향받지 않았다. 용해도로부터 계산한 enhancement factor의 대수값과 유체의 밀도는 직선적인 관계로 표시될 수 있으며 그 관계는 온도에 약간의 영향을 받고 있음을 확인하였다.
The solubilities of phenol, p-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4,6-trich-lorophenol in carbon dioxide were measured under the supercritical conditions of pressure range between 8 and 20MPa, and 309.2K, 318.2K and 333.2K, using the flow-type apparatus that was newly manufactured. The solubilities were good agreement with the equilibrium data predicted by using Peng-Robinson equation of state, although temperature of a and b in the equation of state were obtained by regression method utilizing the experimental solubilties and they and little affected by the temperature for a binary system. The enhancement factor obtained from the solubility data was linearly related in semi-log plot, and the relations were affected by the temperature of a binary system.
  1. Tsekhanskaya YV, Iomtev MB, Mushkina EV, Russ. J. Phys. Chem., 38, 1173 (1964)
  2. VanLeer RA, Paulaitis ME, J. Chem. Eng. Data, 25, 257 (1980) 
  3. 배효광, 박재효, 이승엽, 이철희, 연구보고, 15, 51 (1987)
  4. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976) 
  5. Ambrose D, National Physical Laboratory Report, Chem., 92 (1978)
  6. Ambrose D, National Physical Laboratory Report, Chem., 98 (1979)
  7. Lydersen AI, Greenkorn RA, Hougen OA, University of Wisconsin Engineering Experiment Station, Report 4 (1955)
  8. Mchugh MA, Paulatis ME, J. Chem. Eng. Data, 25, 326 (1980) 
  9. Schmitt WJ, Reid RC, J. Chem. Eng. Data, 31, 204 (1986) 
  10. Iwai Y, Yamamoto H, Tanaka Y, Arai Y, J. Chem. Eng. Data, 35, 174 (1990) 
  11. Wells PA, Chaplin RP, Foster NR, J. Supercrit. Fluids, 3, 8 (1990) 
  12. Gurdial GS, Wells PA, Foster NR, Chaplin RP, J. Supercrit. Fluids, 2, 85 (1989) 
  13. Johnston KP, Eckert CA, AIChE J., 27, 733 (1981) 
  14. Schmitt WJ, Reid RC, "Supercritical Fluid Technology," Edited by Penninger, J.M.L., Radosx, M., Mchugh, M. and Krukonis, V.J., Elsevier, New York, p. 123 (1985)
  15. Weast RC, "CRC Handbook of Chemistry and Physics," 70th Ed., CRC Press, Florida (1989)
  16. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids," 4th Ed., McGraw-Hill (1987)
  17. Ziger DH, Eckert CA, Ind. Eng. Chem. Process Des. Dev., 22, 582 (1983) 
  18. Iwai Y, Fukuda T, Koga Y, Arai Y, J. Chem. Eng. Data, 36, 430 (1991) 
  19. Roop RK, Akgerman A, Dexter BJ, Irvin R, J. Supercrit. Fluids, 2, 51 (1989) 
  20. Ghonasgi D, Gupta S, Dooley KM, Knopf FC, AIChE J., 37, 944 (1991) 
  21. Ghonasgi D, Gupta S, Dooley KM, Knopf FC, AIChE J., 37, 944 (1991) 
  22. Ghonasgi D, Gupta S, Dooley KM, Knopf FC, J. Supercrit. Fluids, 4, 53 (1991) 
  23. Gupta S, Ghonasgi D, Dooley KM, Knopf FC, J. Supercrit. Fluids, 4, 181 (1991) 
  24. McClellan AK, Bauman EG, McHugh MA, "Supercritical Fluids Technology," Edited by Penninger, J.M.L., Radosz, M., McHugh, M.A. and Krukonis, V.j., Elsevier, p. 161 (1985)
  25. Bae HK, Kim SS, Han DH, Int. Chem. Eng., 27(1), 132 (1987)