화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.6, 753-758, December, 1993
황화수소 제거용 흡착제에 혼합된 산화철의 영향
Effect of Ferric Oxide on the Adsorbent for Hydrogen Sulfide
초록
ZnO-Fe2O3계의 복합 금속산화물상에서의 황화수소 제거에 대하여 살펴보았다. 수소 승온환원기법(H2-TPR)을 이용하여 흡착제의 환원거동을, XRD분석을 이용하여 결정구조의 변화를 고찰하였다. Fe2O3의 함량이 증가할수록 ZnO-ZnFe2O4의 결정구조에서 ZnFe2O3로의 결정구조변화가 있었으며 H2-TPR에서의 수소 소모량도 증가하였다. 또한 ZnO의 환원이 이러한 결정구조변화로 인하여 지연됨을 알 수 있었다. Spinel 구조를 가지는 zinc ferrite(ZnFe2O4)의 황화수소 제거능이 가장 우수하였으며 혼합된 Fe2O3가 황화반응 도중 SO2의 생성을 촉진시킴을 알 수 있었다. 아울러 황화반응으로 생성되는 황화물들이 황화수소의 열분해반응이 촉매작용을 하여 수소가 생성되었고, Fe2O3의 함량이 많을수록 발생량도 많음을 확인할 수 있었다.
The removal of hydrogen sulfide over ZnO-Fe2O3 mixed metal oxide sorbents was investigated. H2 temperature-programmed reduction(H2-TPR) and X-ray diffraction(XRD) were used to identify the reduc-tion behavior and crystallographic structure of sorbent, respectively. When ferric oxide was added to the zinc oxide phase, double phase crystallographic structure change was occurred and hydrogen consumption(HC) for the sorbent reduction was increased. Furthermore the reduction of ZnO was retarded because of this structural change. We found that zinc ferrite phase with spinel stucture yielded high H2S removal capacity and Fe2O3 added promoted the formation of SO2 during the sulfidation. It was found that the amount of hydrogen resulted from the decomposition of H2S in the presence of metal sulfides was increased as ferric oxide was increased.
  1. Yoo KO, Research Institute of Industrial Science H.Y. Univ., Research Reports, 25, 429 (1986)
  2. Prasannan PC, Ramachandran PA, Doraiswamy LK, Chem. Eng. Sci., 40(7), 1251 (1987)
  3. Yumura M, Furimsky E, Ind. Eng. Chem. Process Des. Dev., 24(4), 1167 (1985)
  4. Lew S, Jothimurugesan K, Stephanopoulos MF, Ind. Eng. Chem. Res., 28, 5 (1989) 
  5. Sa LN, Focht GD, Ranade PV, Harrison DP, Chem. Eng. Sci., 44(2), 215 (1989) 
  6. Patrick V, Gavalas GR, Stephanopoulos MF, Jothimurugesan K, Ind. Eng. Chem. Res., 28, 931 (1989) 
  7. Tamhankar SS, Wen CY, Chem. Eng. Sci., 36, 1181 (1981) 
  8. Tamhankar SS, Bagajewiz M, Gavalas GR, Ind. Eng. Chem. Process Des. Dev., 25, 429 (1986) 
  9. Lee YS, Yoo KO, Gavalas GR, Korean J. Chem. Eng., 8(4), 214 (1991)
  10. Choi YJ, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(4), 433 (1992)
  11. Armendariz H, Aguilar-Rios G, Salas P, Valenzuela MA, Schifter I, Arriola H, Nava N, Appl. Catal. A: Gen., 92, 29 (1992) 
  12. Edstrom JO, J. Iron Steel Inst., 289 (1953)
  13. Viswanath RP, Viswanath B, Sastri MVC, AIChE J., 35(2), 149 (1977)
  14. Fukuda K, Dokiya M, Kameyama T, Kotera Y, Ind. Eng. Chem. Fundam., 17(4), 243 (1978) 
  15. Chivers T, Hyne JB, Lau C, Int. J. Hydrog. Energy, 5, 499 (1980) 
  16. Berk D, Heidemann RA, Svrcek WY, Behie LA, Can. J. Chem. Eng., 69, 944 (1991)
  17. Stroch F, Balakotaiah V, AIChE J., 37(7), 1035 (1991) 
  18. Park DH, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(6), 700 (1992)