화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.89, No.2, 181-187, 2000
Characterization of FtsZ homolog from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1
The gene of bacterial type ftsZ homolog in hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1 (Pk-ftsZ), was identified. The gene product of the Pk-ftsZ gene is composed of 380 amino acids with a molecular mass of 41,354 Da. In the deduced amino acid sequence of the Pk-ftsZ gene, a glycine-rich sequence (Gly-Gly-Gly-Thr-Gly-Ala-Gly) implicated in GTP binding was well conserved. The Pk-ftsZ gene was overexpressed using Escherichia coli as a host and the recombinant protein was purified. The purified Pk-FtsZ protein exhibited GTPase activity with optimum temperatures higher than 80 degrees C. However, the protein showed little GTPase activity at 40 degrees C, indicating that a high reaction temperature is required for the GTPase activity in accordance with the thermophilic nature of P. kodakaraensis KOD1. The GTP-binding ability of Pk-FtsZ protein could also be detected by UV-induced cross-linking of a protein to [alpha-P-32] GTP. The Pk-ftsZ gene was expressed in E. coli cells with a temperature-sensitive ftsZ mutation, E. coli ftsZ84 (ts), but its mutant phenotype of elongated cell form at a nonpermissive temperature (42 degrees C) could not be compensated, possibly because of the thermophilic nature of the Pk-FtsZ. Pk-FtsZ could form protofilaments in a GTP-dependent manner at 90 degrees C. Results of phylogenetic analysis suggest that there might be additional factors required for formation of the Z ring in P. kodakaraensis KOD1.