화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.1, 10-17, February, 1994
PAFC 단전지 제조조건 및 운전조건에 따른 전지성능 고찰
Cell Performances as to Manufacture and Operation Conditions of Unit Cell for PAFC
초록
수소극과 산소극 그리고 메트릭스가 조합된 단전지에서의 전지성능(전류밀도)을 여러 조건에서 고찰하였다. 우선 총매량이 6w/o 까지 증가할수록 전류밀도는 상승하나 촉매의 이용율은 감소함을 보았다. 전극의 두께가 0.2mm까지는 증가할수록 전류밀도는 증가하였으나 O2이득은 좋지 않았다. 적어도 200시간 동안의 전지운전에 있어서 전지성능의 감소는 주로 전해질의 고갈에 기인됨을 알 수 있었다. 산소극과 수소극의 압력 차이에 대한 전극성능을 측정한 결과 전해질의 마름현상이 없을 경우 산소극의 압력이 증가할수록 성능이 우수할 것이라 예상되었으며, Z & parallel형이 I & cross형과 Z & counter형 보다 좋은 가스 공급방식이었다.
Unit cell performance(current density) was investigated as to various conditions. First of all, as increasing the catalyst contents up to 6w/o, the current density was increased, but decreased the utilization ratio of catalyst was. As thickness of electrode increased up to 0.2mm, the current density was increased but O2 gain was not good. The decrease of cell performance during at least 200hr was mainly due to the exhaustion effect of electrolyte. We anticipated that as the differences of cathodic gas pressure from anodic on increased, the cell performances were to increased unless the exhaustion of electrolyte. Z & parallel-type gas supply method was better one than those of I & cross-type and Z & counter-type.
  1. Kinoshita K, "Carbon," p. 3 (1988)
  2. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," (1989)
  3. Salan VM, Bushnell CL, U.S. Patent, 4,136,059 (1979)
  4. Linden D, "Handbook of Batteries and Fuel Cells," p. 436 (1984)
  5. JIS M8122-8159
  6. Jalan, U.S. Patent, 4,137,373 (1979)
  7. Chin DT, Chang NH, J. Appl. Electrochem., 19, 95 (1989) 
  8. Pebler A, J. Electrochem. Soc., 133, 9 (1986) 
  9. Mitsuda K, Murahashi T, J. Appl. Electrochem., 20, 811 (1990) 
  10. Park JI, Yoo DY, Lee JS, HWAHAK KONGHAK, 28(4), 395 (1990)
  11. Park JI, Kim JW, Lee JS, J. Korean Ind. Eng. Chem., 1(2), 224 (1990)
  12. Kim JW, Kim YW, Lee JS, HWAHAK KONGHAK, 29(5), 513 (1991)