화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 51-57, February, 2002
비선형 Perfluoropolyether의 분해 특성 연구
Study on the Degradation Behavior of Branched Perfluoropolyether
E-mail:
초록
비선형 perfluoropolyethers (PFPEs)의 분해 특성을 선형 PFPEs와 비교하여 살펴보았다. 비선형 PFPEs는 선형 PFPEs와 유사한 열적 특성을 보이며 분자량이 증가함에 따라 열적 특성이 향상됨을 알 수 있었다. 선형 PFPEs의 경우 분자량에 관계없이 Al2O3가 존재하면 열분해와 함께 Lewis acid 분해에 의하여 분해가 일어나는 반면, 비선형 PFPEs는 3500이하의 저 분자량에서 Lewis acid 분해가 발현하지 않음을 확인하였다. 이는 비선형 PFPEs는 Lewis acid 분해의 주원인이 되는 메틸렌 옥사이드가 구조적으로 존재하지 않음에 따른 트렌스 구조에 기인된다. 하지만 분자량이 6250 이상에서는 분자량 증가에 따른 PFPEs 주쇄의 엉김 현상이 증가함에 따라 -OCF(CF3)CF2-의 반복 단위의 산소가 서로 근접되어 이들이 Lewis acid와 반응하여 Lewis acid 분해가 발현됨을 알 수 있었다. 이와 함께 선형 PFPEs와 마찬가지로 포스파젠 첨가제에 의하여 비 선형 PFPEs의 Lewis acid 분해가 최소화됨을 알 수 있었다.
The degradation characteristics of branched perfluoropolyethers (PFPEs) were compared with linear PFPEs. Branched PFPEs showed a similar thermal stability as in linear PFPEs. Thermal stability of branched PFPEs, such as weight loss temperature and glass transition temperature, was improved as the molecular weight increased. It was found that in the presence of Al2O3 Lewis acid degradation did not take place in branched PFPEs for molecular weight less than 3500. This is mainly due to trans conformation of branched PFPEs by the absence of methylene oxide in branched PFPEs chain, which took an important role in Lewis acid degradation. However, the Lewis acid degradation was found in branched PFPEs for weight molecular weight more than 6250 because of molecular entanglement. This could be explained by the fact that the oxygen in ethylene oxide is closely located and it makes possible to react with Lewis acid site (AlF3) rather easily. In addition, the thermal stability enhancement for linear PFPEs was also found by adding phosphazene additives.
  1. Mate CM, Tribol. Lett., 4, 119 (1998) 
  2. Bhushan B, Trans. ASME J. Tribol., 114(J), 420 (1992)
  3. Laurenson L, Dennnis NTM, Newton J, Vacuum, 29, 433 (1979) 
  4. Vertes M, Vacuum, 44, 769 (1993) 
  5. Jones WR, Snyder CE, ASLE Trans., 23, 253 (1980)
  6. Fusaro RL, Lubrication Eng., 182 (1995)
  7. Zaretsky EV, Tribol. Int., 75 (1990) 
  8. Kassai PH, Macromolecules, 25, 6791 (1992) 
  9. Mori S, Onodera N, Itoh M, Wear, 168, 85 (1993) 
  10. Novotny VJ, Pan XH, Bhatia CS, J. Vac. Sci. Technol. A, 12(5), 2879 (1994) 
  11. Chun SW, Ph.D. Dissertation, Dankook Univ., Seoul, Korea (2001)
  12. Matsunuma S, Molecular Orbital Simulations on Degradation of Lubrication for Magnetic Disk, Proceeding of the Wolrd Tribology Congress, London, 582 (1997)
  13. Kang HJ, Zhao Q, Talke FE, Perettie DJ, Dedoven BM, Morgan TA, Fischer DA, Hsu SM, Lubrication Eng., Mar., 22 (1999)
  14. Chun SW, Park S, Kim W, Kang HJ, J. Korean Ind. Eng. Chem., 11(8), 923 (2000)
  15. Perettie DJ, Johnson WD, Morgen TA, Kar KK, Potter GE, Info. Storage Syst., 7, 157 (1996)
  16. Zhao Z, Bushan B, Kajdas C, Tribol. Lett., 6, 141 (1999) 
  17. Zhao Q, Kang HJ, Fu L, Talke FE, Perettie DJ, Lubrication Eng., Mar., 16 (1999)
  18. Park S, Chun S, Perettie DJ, Talk FE, Kang HJ, Polym.(Korea), 23(1), 73 (1999)
  19. Kang HJ, Perettie DJ, Talke FE, IEEE Trans. Magn., 35(5), 2385 (1999) 
  20. Kassai PH, Raman V, Perfluoropolyethers with Dialkylamin End-Group, Ultrastable Disk Lubricant, ICMAT 2001, Singapore (2001)
  21. Ciampelli F, Vanturi MT, Sianesi D, Org. Magn. Resonance, 1, 281 (1969) 
  22. Turi EA, Thermoplastic Polymers, 237 Academic Press, New York (1983)
  23. Kassai PH, Wheeler P, Appl. Surf. Sci., 52, 91 (1991) 
  24. Jhon MS, Choi HJ, J. Ind. Eng. Chem., 7(5), 263 (2001)
  25. Wattman RJ, Chem. Mater., 9, 2185 (1997) 
  26. Marchionni G, Ajroldi G, Cinuina P, Tampellini E, Polym. Eng. Sci., 30(14), 829 (1990)