화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.1, 22-27, February, 2002
수용액에서 칼사이트형 탄산칼슘에 대한 납이온(II)의 흡착특성
Adsorption Characteristics of Pb(II) on Calcite-Type Calcium Carbonate in Aqueous Solutions
E-mail:
초록
본 연구에서는 수용액의 납이온을 칼사이트형 탄산칼슘을 이용하여 효과적으로 제거하기 위해 10 Pb(2+)mg/l의 납수용액과 탄산칼슘 1.5 g/l를 반응기에 넣고 흡착실험을 실시했다. Langmuir와 Freundlich 흡착등온식의 신뢰도는 각각 97%와 76%로 Langmuir식의 신뢰도가 높았고 pH 1.6-4 범위에서 흡착량이 급격히 증가하여 pH 4에서는 98% 흡착이 이루어졌으며 그 이후의 범위에서는 거의 변화폭이 없었다. 20%와 35% 염산 수용액으로 각각 전처리하는 경우 20.5%, 14.1%의 흡착능 개선효과가 있었다. 수용액의 칼슘이온은 탄산칼슘에 대한 납이온의 흡착량이 증가할수록 증가되었지만 염산 수용액으로 전처리하는 경우 흡착량에 따른 납이온의 농도 변화는 거의 없었다.
In this article, adsorption experiments were performed to remove effectively the lead ion(Pb2+) in aqueous solutions by the calcite-type calcium carbonate in a reactor to be placed both the lead solution of 10 Pb2+mg/l and the calcium carbonate of 1.5 g/l. Reliabilities of Langmuir and Freundlich adsorption isotherms were 97% and 76%, respectively, and the reliability of Langmuir adsorptiom isotherm was higher than that of Freundlich adsorption isotherm. The adsorption amount increased rapidly in range from pH 1.6 to pH 4 and then the 98% of total adsorption amount was approached at pH 4. Over pH 4, the variation of the adsorption amount was rarely observed. Adsorptivity of a calcium carbonate with the pretreatment of 20% and 35% HCl solutions was increased by 20.5% and 14.1%, respectively. Ca2+ concentration in aqueous solutions increased with an increasing adsorption amount of Pb2+ on CaCO3 but the variation of a Ca2+ concentration by using the pretreated CaCO3 was seldom observed.
  1. Lee SC, Chung JG, HWAHAK KONGHAK, 39(1), 48 (2001)
  2. Artola A, Martin M, Balaguer MD, Rigola M, J. Colloid Interface Sci., 232(1), 64 (2000) 
  3. Niesink RJM, Vries JD, Hollinger MA, "Toxicology Principles and Applications," CRC Press, New York, N.Y. (1996)
  4. The Textbook Publishing Committee of Life and Chemistry: "Life and Chemistry," Freedom Academy, Seoul (1998)
  5. Kim MS, Lee SC, Chung JG, J. Korean Ind. Eng. Chem., 12(1), 83 (2001)
  6. Barbier F, Duc G, Petit-Ramel M, Colloids Surf., 166, 153 (2000) 
  7. Nagata N, Kubota LT, Bueno MIMS, Peralta-Zamora PG, J. Colloid Interface Sci., 200(1), 121 (1998) 
  8. Gupta VK, Gupta M, Sharma S, Water Res., 35(5), 1125 (2001) 
  9. Seki H, Suzuki A, J. Colloid Interface Sci., 211(2), 375 (1999) 
  10. Kim MS, Chung JG, J. Colloid Interface Sci., 233(1), 31 (2001) 
  11. Lee KH, Chung TS, J. Korean Ind. Eng. Chem., 11(1), 75 (2000)
  12. Lee KH, Chung TS, J. Korean Ind. Eng. Chem., 12(2), 170 (2001)
  13. Lee GH, Ph.D. Dissertation, Sungkyunkwan University, Suwon, Korea (1999)
  14. Dalas E, Klepetsanis PG, Koutsoukos PG, J. Colloid Interface Sci., 224(1), 56 (2000) 
  15. Geffroy C, Foissy A, Lixon P, Tournilhac F, Cabane, Colloids Surf., 162, 107 (2000) 
  16. Song MG, Kim JY, Kim JD, J. Colloid Interface Sci., 226(1), 83 (2000) 
  17. Halabkessira L, Ricard A, J. Colloid Interface Sci., 179(1), 269 (1996) 
  18. Bilinski H, Sirac S, Kozar S, Branica M, Schwuger MJ, Water Res., 29(8), 1993 (1995) 
  19. Vengris T, Binkiene R, Sveikauskaite A, Appl. Clay Sci., 18, 183 (2001) 
  20. Gutjahr A, Dabringhaus H, Lacmann R, J. Cryst. Growth, 158, 310 (1996) 
  21. Hitachi Ltd.: "Analysis Guide for Polarized Zeem Atomic Absorption Spectrophotometry," Hitachi Ltd., Tokyo (1987)
  22. Dionex Co.: "Quality Assurance Report," Dionex Co., No. 43174, U.S.A. (1995)
  23. Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)
  24. Morris GE, Vincent B, Snowden MJ, J. Colloid Interface Sci., 190(1), 198 (1997) 
  25. Slejko FL, "Adsorption Technology," Marcel Dekker, Inc., New York, N.Y. (1985)