Polymer(Korea), Vol.26, No.2, 245-252, March, 2002
상용화제를 포함한 PMMA/PVME 블렌드의 열역학적 특성과 기체 투과 특성
Thermodynamic Characteristics of PMMA/PVME Blends Containing Compatibilizer and Their Gas Transport Properties
E-mail:
초록
상용화제로 poly(styrene-b-methylmethacrylate) [P(S-b-MMA)] 블록 공중합체를 포함한 polymethylmethacrylate (PMMA)와 polyvinylmethylether (PVME) 블렌드의 열역학적 특성과 이들의 기체 투과특성을 조사하였다. 블렌드에 포함된 여러 고분자들 간의 상호작용 에너지를 상분리 온도와 상태방정식 이론으로부터 구하기 위해 다양한 조성의 poly(styrene-co-methylmethacrylate) (SMMA) 랜덤 공중합체를 제조하고 이를 PVME와 블렌드하여 단상의 블렌드를 제조하였다. 공중합체 내의 스티렌 함량이 70 wt% 이상에서는 SMMA/PVME 블렌드는 단상을 형성할 뿐아니라 LCST 거동을 나타내었다. 여기서 구한 상호작용 에너지를 기초로 PMMA/PVME 블렌드의 상용성을 향상시키기 위해 P(S-b-MMA) 블록 공중합체를 상용화제로 첨가하였다. 분산상으로 존재하는 PVME 고무 입자들의 평균 크기는 상용화제 첨가량이 5 phr 이하에서는 점차 감소하지만 더 이상의 상용화제를 첨가해도 분산상의 크기 변화는 관찰되지 않았다. 일정 블렌드 조성에서 기체 투과도도 상용화제의 양이 5 phr 일때까지는 증가하지만 그 이상의 상용화제 함량에서는 기체 투과도 변화가 관찰되지 않았다.
Thermodynamics and gas transport properties of polymethylmethacrylate (PMMA) blends with polyvinylmethylether (PVME) containing various amount of poly(styrene-b-methylmethacrylate)
copolymer (P(S-b-MMA)) as a compatibilizer were studied. To extract interaction energies of binary pairs involved in the blends from the phase separation temperatures using an equation-of-state theory, PVME blends with methylmethacrylate copolymers containing various amount of styrene (SMMA) were prepared. PVME formed miscible blends with methylmethacrylate copolymers containing more than 70 wt% styrene and these miscible blends showed a LCST-type phase separation behavior. Based on the interaction information obtained here, P(S-b-MMA) copolymer was added to the PMMA/PVME blends to enhance their compatibility. The average diameter of the dispersed rubber particles was gradually decreased for the blends of containing P(S-b-MMA) from 0 to 5 phr and then leveled off at a fixed size. At a fixed blend composition, the gas permeation was also increased as the P(S-b-MMA) content increased from 0 to 5 phr and then leveled off when the P(S-b-MMA) content was higher than 5 phr.
- Robeson LM, J. Membr. Sci., 62, 165 (1991)
- Koros WJ, Paul DR, J. Polym. Sci. B: Polym. Phys., 14, 675 (1976)
- Mulder M, "Basic Principles of Membrane Technology", Kluwer Academic Pub., Dordrecht, Netherlands (1996)
- Csernica J, Baddour RF, Cohen RE, Macromolecules, 22, 1492 (1986)
- Csernica J, Baddour RF, Cohen RE, Macromolecules, 23, 1429 (1990)
- Shur YJ, Ranby BG, J. Appl. Polym. Sci., 19, 1337 (1975)
- Jacques CHM, Hopfenberg HB, Polym. Eng. Sci., 14, 499 (1974)
- Sax J, Ottino JM, Polym. Eng. Sci., 23, 165 (1983)
- Ottino JM, Shah N, Polym. Eng. Sci., 24, 153 (1984)
- Sax J, Ottino JM, Polymer, 26, 1073 (1985)
- Wool RP, "Poymer Interfaces, Structure and Strength", Hanser Publisher, Cincinnati, 336 (1989)
- Kim CK, Paul DR, Polymer, 33, 4929 (1992)
- Kim JH, Park DS, Kim CK, J. Polym. Sci. B: Polym. Phys., 38(20), 2666 (2000)
- Paul DR, Barlow JW, Polymer, 25, 487 (1984)
- Rodgers PA, J. Appl. Polym. Sci., 48, 1061 (1993)
- Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976)
- Sanchez IC, Lacombe RH, Macromolecules, 11, 1145 (1978)
- Sanchez IC, Balazs AC, Macromolecules, 22, 2325 (1989)
- Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2568 (1976)