화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.1, 95-102, February, 1994
초임계유체내에서 고분자 용액의 상거동 및 분획
Phase Behaviors and Fractionation of Polymer Solutions in Supercritical Fluids
초록
Polystyrene-toluene-CO2 system에서 CO2의 농도를 변화시키면서 상거동을 관찰하여 LCST(lower critical solution temperature)와 UCST(upper critical solution temperature)를 실험적으로 결정하였으며, 액-액 상분리현상을 이용한 고분자용액의 분획실험을 하였다. 상거동 실험결과 CO2의 농도가 15.0wt%에서는 7.6-100℃의 실험온도 범위내에서 LCST만 관찰할 수 있었고, 16.2wt%에서는 LCST 뿐만 아니라 UCST도 관찰되었으며, 농도를 16.6wt% 로 증가시킬 때 LCST와UCST가 중첩되는 것을 관찰할 수 있었다. 초임계 CO2의 농도가 16.6wt%인 경우에 온도와 압력을 여러 가지로 변화시키면서 고분자용액의 분획시료를 얻었는데, 분자량과 유리전이온도(Tg)를 측정하여 다양한 분자량 분포를 갖는 분획된 시료의 해석을 시도하였다.
Through the observation of phase behaviors in polystyrene-toluene-CO2 systems by varying CO2 concentrations the LCST and UCST have been determined experimentally. Fractionation of those solutions has been performed utilizing liquid-liquid-liquid phase split phenomena. The experiment shows that only LCST has been detected when the concentration of CO2 is 15.0wt% for the temperature range from 7.6℃ to 100℃. We also observed UCST as well as LCST at 16.2wt% of CO2 and the dramatic merge of two critical solution temperature curves by increasing CO2 concentration to 16.6wt%. When the concentration of CO2 is 16.6wt%, the fractionated polymer samples have been obtained at different experimental conditions, and those samples have been analyzed in terms of molecular weights and glass transition temperatures.
  1. Johnston KP, Penniger JML, "Supercritical Fluids Science and Technology," ACS Symp. Ser., 406, ACS, Washington, D.C. (1989)
  2. Petersen RC, Matson DW, Smith RD, J. Am. Chem. Soc., 108, 2100 (1986) 
  3. Shim JJ, Johnston KP, J. Phys. Chem., 95, 353 (1991) 
  4. Brady BO, Kao CP, Dooley KM, Knopf FC, Gambrell RP, Ind. Eng. Chem. Res., 26, 261 (1987) 
  5. Modell M, "Processing Methods for the Oxidation of Organics in Supercritical Water," U.S. Patent, 4,338,199 (1982)
  6. Kumar SK, Suter UW, Reid RC, Fluid Phase Equilib., 29, 373 (1987) 
  7. Scholsky KN, O'Conner KM, Weiss CS, Krukonis VJ, J. Appl. Polym. Sci., 33, 2925 (1987) 
  8. McHugh MA, Krukonis V, "Supercritical Fluid Extraction Principles and Practice," Butterworth, Stoneham, MA (1986)
  9. Yilgor I, McGrath JE, Krukonis V, Polym. Bull., 12, 491 (1984) 
  10. Yilgor I, McGrath JE, Krukonis V, Polym. Bull., 12, 499 (1984) 
  11. Zeman L, Biros J, Delmas G, Patterson D, J. Phys. Chem., 76(8), 1206 (1972) 
  12. Zeman L, Patterson D, J. Phys. Chem., 76(8), 1214 (1972) 
  13. Seckner AJ, McClellan AK, McHugh MA, AIChE J., 34(1), 9 (1988) 
  14. Dhalewadiker SV, McHugh MA, Guckes TL, J. Appl. Polym. Sci., 33, 521 (1987) 
  15. McHugh MA, Guckes TL, Macromolecules, 18, 674 (1985) 
  16. McClellan AK, Mchugh MA, Polym. Eng. Sci., 25(17), 1088 (1985) 
  17. Beret S, Prausnitz JM, AIChE J., 21, 1123 (1975) 
  18. Jin G, Walsh JM, Donohue MD, Fluid Phase Equilib., 31, 123 (1986) 
  19. Panyioutou C, Vera JH, Polym. J., 14, 681 (1982) 
  20. Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532 (1987) 
  21. Gal-Or B, Cullinan HT, Galli R, Chem. Eng. Sci., 30, 1085 (1975) 
  22. Kehlen H, Ratzsch MT, Bergman J, AIChE J., 31, 1136 (1985) 
  23. Salacuse JJ, Stell G, J. Chem. Phys., 77, 3714 (1982) 
  24. Cotterman RL, Bender R, Prausnitz JM, Ind. Eng. Chem. Process Des. Dev., 24, 194 (1984)
  25. Cotterman RL, Prausnitz JM, Ind. Eng. Chem. Process Des. Dev., 24, 434 (1985) 
  26. Willman BT, Teja AS, Ind. Eng. Chem. Res., 26, 953 (1987) 
  27. Saeki S, Kuwahara N, Konno S, Kaneko M, Macromolecules, 6, 246 (1973)