Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.2, 166-172, April, 2002
AgNO3 침적 처리가 활성탄소섬유의 Ag에 의한 미세기공 채움 및 항균활성에 미치는 영향
Effect of Micropore Filling by Silver and Anti-bacterial Activity of Activated Carbon Fiber Surfaces Treated with AgNO3
E-mail:
초록
AgNO3 용액 침적처리로 세균에 대한 항균활성을 가지는 활성탄소섬유를 제조하여 미세기공 채움 및 항균활성에 미치는 영향에 대하여 고찰하였다. 미세기공 채움 특성은 BET를 이용하여 측정하였으며, 항균활성시험은 병원성 세균으로서 그람 양성균인 황색포도상구균 (Staphylococcus aureus)과 비병원성의 그람 음성균인 대장균 (Escherichia coli)을 대상으로 그 효과를 측정하였다. 그 결과, Ag가 활성탄소섬유 표면에 도입됨에 따라 비표면적은 약간씩 감소하는 경향을 나타내었으며, 기공에 침착되는 Ag는 낮은 농도에서 보다 상대적으로 높은 농도에서 기공의 막힘 현상이나 채움 현상에 더 많은 영향을 미쳤으며, 미세기공 중 상대적으로 큰 미세기공에서 채움 현상이 많이 일어나는 것을 관찰할 수 있었다. 또한, 항균활성 시험으로부터 1.0 wt% AgNO3 용액으로 처리한 활성탄소섬유는 S.aureus 및 E.coli 모두에서 강한 항균활성을 나타내는 것을 확인하였다.
Activated carbon fibers (ACFs), which supported silver, were prepared by immersion in AgNO3 solution, and the effects of micropore filling by silver particles and its antibacterial activity were investigated. Effects of micropore filling by silver particles and antibacterial activity were characterized by BET methods and dilution test against Staphylococcus aureus (S. aureus; gram positive and virulence) and Escherichia coli (E. coli; gram negative and avirulence), respectively. From the experimental results, the ACFs exhibited a decrease in BET's specific surface area following the treatment with the silver solution. More micropores were either filled or closed by silver particles at a higher concentration of AgNO3 solution rather than a lower one. The ACFs immersed in 1.0 wt% of AgNO3 showed a strong antibacterial activity against the both strains, S. aureus and E. coli, which suggests it as a promising antibacterial material.
- Bansal RC, Donnet JB, Stoeckli F, Active Carbon, Marcel Dekker, New York (1998)
- Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. J.P. Hsu, Marcel Dekker, New York (1999)
- Lowell S, Shields JE, Power Surface Area and Porosity, Chapman & Hall, London (1993)
- Park SJ, Donnet JB, J. Colloid Interface Sci., 200(1), 46 (1998)
- Herrera P, Burghardt RC, Phillips TD, Veterinary Microbiol., 74, 259 (2000)
- Hill WR, Pillsbury DM, Argria, the Pharmacology of Silver, The Williams & Wilkins Co., Baltimore (1939)
- Marino AA, Berger TJ, Becker RO, Spadaro JA, Chem. Biol. Interact., 9, 217 (1974)
- Spadaro JA, Becker RO, Bioelectrochem. Bioenerg., 3, 49 (1976)
- Webster DA, Spadaro AJ, Becker RO, Kramer S, Clin. Orthop. Rel. Res., 161, 105 (1981)
- Rungby J, Ellermann ES, Danscher G, Arch. Toxicol., 61, 40 (1987)
- Oya A, Yoshida S, Carbon, 31, 71 (1993)
- Oya A, Wakahara T, Yoshida S, Carbon, 31, 1243 (1993)
- Oya A, Yoshida S, Monge JA, Solano AL, Carbon, 34, 53 (1996)
- Li CY, Wan YZ, Wang J, Wang YL, Jiang XQ, Han LM, Carbon, 36, 61 (1998)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Lippens BC, de Boer JH, J. Catal., 4, 319 (1965)
- Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
- Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
- Van Bokhoven JJGM, Thermochim. Acta, 34, 109 (1979)
- Ruthven DM, Principles of Adsorption and Adsorption Process, Chap. 8, John Wiley, New York (1984)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London (1982)