HWAHAK KONGHAK, Vol.40, No.2, 224-230, April, 2002
순환유동층 반응기에서 벽면의 마모 특성 고찰
Observation of Wall Erosion in a Circulating Fluidized Bed Reactor
E-mail:
초록
순환유동층(0.25 m-L×0.62 m-W×10 m-H) 반응기에서 조업조건에 따른 상승관 벽면에서의 마모특성을 고찰하였다. 상승관에서의 기체유속(1.9-3.8 m/s), 전체 고체량(100-200 kg) 그리고 일-이차 공기비(0.8-1.0) 변화에 따른 상승관 높이 및 위치별 마모율을 고찰한 결과, 고체 체류량 및 고체 순환량, 그리고 입자의 유속 혹은 유동화 속도의 변화가 마모율에 영향을 미치는 것으로 나타났다. 순환유동층 희박상에서는 유동화 속도 증가 및 일-이차 공기비의 증가에 따른 고체 체류량의 증가로 인해 벽면에서의 마모율이 증가되었으며, 반면 농후상에서는 고체 체류량보다는 유동화 속도의 증가 혹은 이차 공기 주입에 따른 유동변화에 의해 마모율이 크게 영향을 받는 것으로 나타났다. 전이영역에 대한 마모율은 대부분의 조업조건에 대해 농후상과 희박상 영역의 중간 정도의 마모율을 갖는 것으로 나타났다. 한편, 순환유동층내의 유속 증가에 따른 고체 순환량 증가에 따라 상승관 천장부위에서의 마모율은 크게 증가하는 것으로 고찰되었다. 특히 가운데 부위가 가장 큰 마모율을 보였다. 또한 상승관 상부 벽면의 마모 경향은 입자의 하향흐름이 가장 많이 생성되는 사이클론 주입부 벽면에서 가장 큰 마모율을 보이는 것으로 나타났다.
The wall erosion characteristics of a circulating fluidized bed reactor(0.25 m-L×0.62 m-W×10 m-H) was observed with various operating conditions, such as fluidizing velocity, total solid inventory and primary to secondary air ratio. The erosion rate was affected by solid hold-up and solid circulation rate as well as fluidizing velocity which were varied due to operating conditions. The wall erosion in dilute phase of the CFB riser increased with increasing solid hold up resulted from increasing of the fluidizing velocity and the primary to secondary air ratio. The erosion of the wall in dense phase increased with increasing fluidizing velocity although the solid hold up decreased with fluidizing velocity. The extent of erosion in the transition phase was somewhere in between the dense and the dilute phases. The erosion of the roof of the CFB riser increased
with increasing solid circulation rate resulted from increasing the fluidizing velocity, total solid inventory and primary to secondary air ratio. The middle part of the roof where the solid circulation rate was higher than that of the side part of the roof, showed the highest erosion rate. The erosion seemed to be serious at the area around the cyclone inlet duct due to the enlarged
down flow of the solid particles at this area.
- Stringer J, Stallings J, Proceedings of the 11th Int. Conf. on FBC, Montreal, Canada, 589 (1991)
- Wang BQ, Lee SW, Proceeding of the 13th Int. Conf. on FBC, Orlando, FL, USA, 1427 (1995)
- Stringer J, Proceedings of the 9th Int. Conf. on FBC, New York, USA, 685 (1987)
- Macoy DE, Garver DL, Hileman G, U.S. Patent No. 4,724,049 (1987)
- Stringer J, Ehrlich S, ASME Paper No. 76-WA/CD-4, 11 (1976)
- Bixer AD, EPRI Report GS-6747, Paper No. 35, California USA (1990)
- Kim SM, Kim EH, Lee JM, Kim JS, KEPRI Report, TM.00GJ06, P2000.448, Taejon, Korea (2000)
- Lee JM, Kim SM, Kim JS, Kim JJ, Song KK, Energy Engg. J., 9, 348 (2000)
- Lee JM, Kim JS, Kim JJ, Korean J. Chem. Eng., 18(6), 1000 (2001)
- Zhang W, Johnsson F, Report A91-193, Dept. of Energy Conversion, Charmers Univ., Sweden (1991)
- Johnesson F, Leckner B, Proceedings of 13th Int. Conf. on FBC Florida, USA, 671 (1995)
- Lee JM, Kim JS, Kim JJ, International Sym. on Chem. Eng., Cheju, Korea, 263 (2001)
- Kim J, Korean J. Chem. Eng., 16(6), 840 (1999)
- Kaneda H, Oki K, EPRI Report GS-6747, Paper No. 14, Califormia USA (1990)
- Choi JH, Park JH, Choung WM, Kang Y, Kim SD, Korean J. Chem. Eng., 12(2), 141 (1995)
- Bis Z, Gajewski W, Krzywanski J, Leszczynski JS, Proceedings of 5th International Conf. on CFB, Paper No. MSD8, Beijing, China (1996)
- Slusser JW, Bartlertt SB, Bixer AD, EPRI Report GS-6747, Paper No. 16, California USA