Materials Research Bulletin, Vol.36, No.15, 2627-2636, 2001
Enhancing the microstructural and mechanical response of a Mg/SiC formulation by the method of reducing extrusion temperature
In the present study, a magnesium-based composite with about 11.5 wt% of SiC particulates was synthesized using an innovative disintegrated melt deposition technique followed by extrusion at different temperatures of 350, 250, 150, and 100 degreesC. Microstructural characterization of the extruded samples showed an increase in alignment of SiC particulates in the direction of extrusion, reduction in number of SiC particulate clusters, and improved distribution of the SiC particulates as the extrusion temperature decreased. Good interfacial integrity and minimal porosity was also observed for all the samples. Mechanical properties characterization revealed that a decrease in extrusion temperature from 350 to 100 degreesC lead to a significant increase in the hardness, elastic modulus, 0.2% yield strength, while the average UTS and ductility remained unaffected. An attempt is made to correlate the effect of decreasing the extrusion temperature with the microstructural and mechanical behavior of the composite.